Publication Cover
Materials Technology
Advanced Performance Materials
Volume 32, 2017 - Issue 13
261
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

High-efficient TiO2 NRs/BiOI NSs heterojunction photoanodes for photoelectrochemical water splitting

, &
Pages 823-828 | Received 23 May 2017, Accepted 08 Aug 2017, Published online: 24 Aug 2017

References

  • Hidalgo D, Bocchini S, Fontana M. Green and low-cost synthesis of PANI-TiO2 nanocomposite mesoporous films for photoelectrochemical water splitting. RSC Adv. 2015;5:49429–49438.10.1039/C5RA06734K
  • Liu ZF, Guo KY, Han JH, et al. Dendritic TiO2/ln2S3/AgInS2 trilaminar core/shell branched nanoarrays and the enhanced activity for photoelectrochemical water splitting. Small. 2014;10:3153–3161.10.1002/smll.v10.15
  • Zhang J, Liu ZH, Liu ZF. Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. ACS Appl Mater Interfaces. 2016;8:9684–9691.10.1021/acsami.6b00429
  • Kim TW, Choi KS. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science. 2014;343:990–994.10.1126/science.1246913
  • Chandrasekaran S, Kim EJ, Chung JS, et al. Structurally tuned lead magnesium titanate perovskite as a photoelectrode material for enhanced photoelectrochemical water splitting. Chem Eng J. 2017;309:682–690.10.1016/j.cej.2016.10.087
  • Chandrasekaran S, Chung JS, Kim EJ, et al. Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting. Chem Eng J. 2016;290:465–476.10.1016/j.cej.2016.01.029
  • Chandrasekaran S, Chung JS, Kim EJ, et al. Advanced nano-structured materials for photocatalytic water splitting. J Electrochem Sci Technol. 2016;7:1–12.10.5229/JECST.2016.7.1.7
  • Chandrasekaran S, Kim EJ, Chung JS, et al. High performance bifunctional electrocatalytic activity of a reduced graphene oxide–molybdenum oxide hybrid catalyst. J Mater Chem A. 2016;4:13271–13279.10.1039/C6TA05043C
  • Chandrasekaran S, Hur SH, Kim EJ, et al. Highly-ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting. RSC Adv. 2015;5:29159–29166.10.1039/C5RA02934A
  • Chandrasekaran S, Choi WM, Chung JS, et al. 3D crumpled RGO–Co3O4 photocatalysts for UV-induced hydrogen evolution reaction. Mater Lett. 2014;136:118–121.10.1016/j.matlet.2014.07.179
  • Montazer M, Pakdel E. Reducing photoyellowing of wool using nano TiO2. Photochem Photobiol. 2010;86:255–260.10.1111/php.2010.86.issue-2
  • Liu ZF, Yan L. High-efficiency p-n junction oxides photoelectrodes for photoelectrochemical water splitting. Phys Chem Chem Phys. 2016;18:31230–31237.10.1039/C6CP06536H
  • Zang L, Macyk W, Lange C. Visible-light detoxification and charge generation by transition metal chloride modified titania. Chem-A Eur J. 2000;6:379–384.10.1002/(ISSN)1521-3765
  • Park JH, Kim S, Bard AJ. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 2006;6:24–28.10.1021/nl051807y
  • Lindström H, Rensmo H, Södergren S. Electron transport properties in dye-sensitized nanoporous-nanocrystalline TiO2 films. J Phys Chem. 1996;100:3084–3088.10.1021/jp951314p
  • Hasselmann GM, Meyer GJ. Sensitization of nanocrystalline TiO2 by Re(I) polypyridyl compounds. J Phys Chem. 1999;212:39–44.
  • Tada H, Kokubu A, Iwasaki M. Deactivation of the TiO2 photocatalyst by coupling with WO3 and the electrochemically assisted high photocatalytic activity of WO3. Langmuir. 2004;20:4665–4670.10.1021/la036104f
  • Choi J, Park H, Hoffmann MR. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J Phys Chem C. 2009;114:783–792.
  • Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett. 2003;32:364–365.10.1246/cl.2003.364
  • Zhao ZY, Dai WW. Electronic structure and optical properties of BiOI ultrathin films for photocatalytic water splitting. Inorg Chem. 2015;54:10732–10737.10.1021/acs.inorgchem.5b01714
  • Qin X, Cheng H, Wang W. Three dimensional BiOX (X=Cl, Br and I) hierarchical architectures: facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation. Mater Lett. 2013;100:285–288.10.1016/j.matlet.2013.03.045
  • Zhao ZY, Dai WW. Structural, electronic, and optical properties of Eu-doped BiOX (X=F, Cl, Br, I): a DFT+U study. Inorg Chem. 2014;53:13001–13011.10.1021/ic5021059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.