Publication Cover
Materials Technology
Advanced Performance Materials
Volume 33, 2018 - Issue 6
346
Views
24
CrossRef citations to date
0
Altmetric
Research Article

In vitro and in vivo studies on degradation and bone response of Mg-Sr alloy for treatment of bone defect

, , , , , , & show all
Pages 387-397 | Received 01 Mar 2018, Accepted 12 Mar 2018, Published online: 26 Mar 2018

References

  • Greenwald AS, Boden SD, Goldberg VM, et al. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surgery-Am Vol. 2001;83-A(Suppl 2 Pt 2;2):98.10.2106/00004623-200100022-00007
  • Finkemeie CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surgery-Am Vol. 2002;84-A(3):454.10.2106/00004623-200203000-00020
  • Heest AV, Swiontkowski M. Bone-graft substitutes. Lancet. 1999;353(Suppl 1):SI28.10.1016/S0140-6736(99)90228-3
  • Calori GM, Mazza E, Colombo M, et al. The use of bone-graft substitutes in large bone defects: any specific needs? Injury-Int J Care Inj. 2011;42(3):S56–S63.10.1016/j.injury.2011.06.011
  • Stok JVD. Bone graft substitutes developed for trauma and orthopaedic surgery. Nederlands Tijdschrift voor Traumachirurgie. 2015;23(4):84–84.10.1007/s12506-015-0024-y
  • Baumhauer J, Pinzur MS, Donahue R, et al. Site selection and pain outcome after autologous bone graft harvest. Foot & ankle international / American Orthopaedic. Foot Ankle Soc Swiss Foot Ankle Soc. 2014;35(2):104.
  • Campana V, Milano G, Pagano E, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10):2445–2461.10.1007/s10856-014-5240-2
  • Witte F, Hort N, Vogt C, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12(5):63–72.10.1016/j.cossms.2009.04.001
  • Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater. 2010;6(5):1693.10.1016/j.actbio.2009.10.006
  • Zhang Y, Xu J, Ye CR, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160.10.1038/nm.4162
  • Marie PJ, Ammann P, Boivin G, et al. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int. 2001;69(3):121–129.10.1007/s002230010055
  • Saffar JL. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004;350(5):459.
  • Meunier PJ, Roux C, Ortolani S, et al. Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int. 2009;20(10):1663.10.1007/s00198-008-0825-6
  • Pors NS. The biological role of strontium. Bone. 2004;35(3):583–8.10.1016/j.bone.2004.04.026
  • Liu C, Wan P, Tan LL, et al. Preclinical investigation of an innovative magnesium-based bone graft substitute forpotential orthopaedic applications. J Orthopaedic Trans. 2014;2(3):139–148.10.1016/j.jot.2014.06.002
  • Gu XN, Xie XH, Li N, et al. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater. 2012;8(6):2360–2374.10.1016/j.actbio.2012.02.018
  • Trivedi P, Nune KC, Misra RD. Degradation behavior of magnesium-rare earth biomedical alloys. Mater Technol. 2016;31(12):726–731.10.1080/10667857.2016.1213550
  • Trivedi P, Nune KC, Misra RD. Grain structure dependent self-assembled bioactive coating on Mg-2Zn-2Gd alloy: mechanism of degradation at biointerfaces. Surf Coat Tech. 2017;315(15):250–257.10.1016/j.surfcoat.2017.02.052
  • Mahapatro A, MatosNegron TD, Gomes AS. Nanostructured self-assembled monolayers on magnesium for improved biological performance. Mater Technol. 2016;31(13):818–827.
  • Song GL. Recent progress in corrosion and protection of magnesium alloy. Adv Eng Mater. 2005;7(7):563–586.10.1002/(ISSN)1527-2648
  • Wu G, Ibrahim JM, Chu PK. Surface design of biodegradable magnesium alloys – a review. Surface and Coatings Technology. 2013;233:2–12.
  • Wang H, Estrin Y, Zúberová Z. Bio-corrosion of a magnesium alloy with different processing histories. Mater Lett. 2008;62(16):2476–2479.10.1016/j.matlet.2007.12.052
  • Yang L, Huang Y, Feyerabend F, et al. Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg-Dy alloys. J Mech Behav Biomed Mater. 2012;13:36–44.10.1016/j.jmbbm.2012.04.007
  • Liu C, Xin Y, Tang G, et al. Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid. Mat Sci Eng A-Struct. 2007;456(1–2):350–357.10.1016/j.msea.2006.12.020
  • Zhou W, Shen T, Aung NN. Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid. Corros Sci. 2010;52(3):1035–1041.10.1016/j.corsci.2009.11.030
  • Beckmann F. Microtomography using synchrotron radiation as a user experiment at beamlines BW2 and BW5 of HASYLAB at DESY. Int Symp Opt Sci Technol. 2002;4503:34–41
  • Li CM, Yang HX, Wang W, et al. Evaluation of the osteo-inductive potential of hollow three-dimensional magnesium-strontium substitutes for the bone grafting application. Mat Sci Eng C-Mater. 2016;73:347–356.10.1016/j.msea.2016.01.075
  • Han J, Wan P, Ge Y, et al. Tailoring the degradation and biological response of a magnesium-strontium alloy for potential bone substitute application. Mat Sci Eng C-Mater. 2016;58:799–811.10.1016/j.msec.2015.09.057
  • Trinidad J, Arruebarrena G, Marco I, et al. Effectivity of fluoride treatment on hydrogen and corrosion product generation in temporal implants for different magnesium alloys. Proc Inst Mech Eng Part H J Eng Med. 2013;227(12):1301.10.1177/0954411913502166
  • Dong JH, Tan LL, Ren YB, et al. Effect of microstructure on corrosion behavior of Mg-Sr alloy in Hank’s solution; 2018. Unpublished.
  • Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials. 2007;28(13):2163–2174.10.1016/j.biomaterials.2006.12.027
  • Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–1734.10.1016/j.biomaterials.2005.10.003
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–2915.10.1016/j.biomaterials.2006.01.017
  • Kleerekoper M, Villanueva AR, Stanciu J, et al. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int. 1985;37(6):594–7.10.1007/BF02554913
  • Yoshizawa S, Brown A, Barchowsky A, et al. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 2014;10(6):2834.10.1016/j.actbio.2014.02.002
  • Wong HM, Wu S, Chu PK, et al. Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation. Biomaterials. 2013;34(29):7016–7032.10.1016/j.biomaterials.2013.05.062
  • Monfoulet LE, Becquart P, Marchat D, et al. The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs. Tissue Eng Part A. 2014;20(13–14):1827–40.10.1089/ten.tea.2013.0500
  • Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26(17):3557–3563.10.1016/j.biomaterials.2004.09.049
  • Shen Y, Liu W, Wen C, et al. Bone regeneration: importance of local pH – strontium-doped borosilicate scaffold. J Mater Chem. 2012;22(17):8662–8670.10.1039/c2jm16141a
  • Dds EL, Adolfsson E, Strid KG, et al. Resorbable and nonresorbable hydroxyapatite granules as bone graft substitutes in rabbit cortical defects. Clin Implant Dent R. 2003;5(2):95–101.
  • Wang C, Duan Y, Markovic B, et al. Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions. Biomaterials. 2004;25(13):2507–2514.10.1016/j.biomaterials.2003.09.035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.