Publication Cover
Materials Technology
Advanced Performance Materials
Volume 33, 2018 - Issue 7
100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterizing the vibration behavior of double walled carbon nano cones for sensing applications

, , &
Pages 451-466 | Received 21 Nov 2017, Accepted 22 Mar 2018, Published online: 04 Apr 2018

References

  • Iijima S. Helical microtubules of graphitic carbon Nature. Int J Sci. 1991;354:56–58 Find this article online.
  • Kong XY, Ding Y, Yang R, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science. 2004 Feb 27;303(5662):1348–1351.10.1126/science.1092356
  • Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993 Jun 17;363(6430):603–605.10.1038/363603a0
  • Iijima S, Ichihashi T, Ando Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature. 1992 Apr 30;356(6372):776.
  • To CW. Bending and shear moduli of single-walled carbon nanotubes. Finite Elem Anal Des. 2006 Feb 28;42(5):404–413.10.1016/j.finel.2005.08.004
  • Mehdipour I, Barari A, Kimiaeifar A, et al. Vibrational analysis of curved single-walled carbon nanotube on a Pasternak elastic foundation. Adv Eng Softw. 2012 Jun;30(48):1–5.10.1016/j.advengsoft.2012.01.004
  • Kumar D, Verma V, Bhatti HS, et al. Elastic moduli of carbon nanohorns. J Nanomater. 2011 Jan;1(2011):13.
  • Ge M, Sattler K. Observation of fullerene cones. Chem Phys Lett. 1994 Apr 1;220(3–5):192–196.10.1016/0009-2614(94)00167-7
  • Yu MF, Lourie O, Dyer MJ, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000 Jan 28;287(5453):637–640.10.1126/science.287.5453.637
  • Haque MA, Saif MT. Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study. Proc Nat Acad Sci U S A. 2004 Apr 27;101(17):6335–6340.10.1073/pnas.0400066101
  • Zhu Y, Espinosa HD. An electromechanical material testing system for in situ electron microscopy and applications. Proc Nat Acad Sci U S A. 2005 Oct 11;102(41):14503–14508.10.1073/pnas.0506544102
  • Pantano A, Parks DM, Boyce MC. Mechanics of deformation of single-and multi-wall carbon nanotubes. J Mech Phys Solids. 2004 Apr 30;52(4):789–821.10.1016/j.jmps.2003.08.004
  • Naess SN, Elgsaeter A, Helgesen G, et al. Carbon nanocones: wall structure and morphology. Sci Technol Adv Mater. 2009 Dec 29;10(6):065002.10.1088/1468-6996/10/6/065002
  • Krishnan A, Dujardin E, Treacy MM, et al. Graphitic cones and the nucleation of curved carbon surfaces. Nature. 1997 Jul 31;388(6641):451.10.1038/41284
  • Treacy MJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 1996 Jun 20;381(6584):678.10.1038/381678a0
  • Wei JX, Liew KM, He XQ. Mechanical properties of carbon nanocones. Appl Phys Lett. 2007 Dec 24;91(26):261906.10.1063/1.2813017
  • Liao ML, Cheng CH, Lin YP. Tensile and compressive behaviors of open-tip carbon nanocones under axial strains. J Mater Res. 2011 Jul;26(13):1577–1584.10.1557/jmr.2011.160
  • Tsai PC, Fang TH. A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones. Nanotechnology. 2007 Jan 31;18(10):105702.10.1088/0957-4484/18/10/105702
  • Yan JW, Liew KM, He LH. Ultra-sensitive analysis of a cantilevered single-walled carbon nanocone-based mass detector. Nanotechnology. 2013 Mar 4;24(12):125703.10.1088/0957-4484/24/12/125703
  • Hu YG, Liew KM, He XQ, et al. Free transverse vibration of single-walled carbon nanocones. Carbon. 2012 Oct 31;50(12):4418–4423.10.1016/j.carbon.2012.04.072
  • Iijima S, Brabec C, Maiti A, et al. Structural flexibility of carbon nanotubes. J Chem Phys. 1996 Feb 1;104(5):2089–2092.10.1063/1.470966
  • Yakobson BI, Campbell MP, Brabec CJ, et al. High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput Mater Sci. 1997 Sep 1;8(4):341–348.10.1016/S0927-0256(97)00047-5
  • Hernandez E, Goze C, Bernier P, et al. Elastic properties of C and B x C y N z composite nanotubes. Phys Rev Lett. 1998 May 18;80(20):4502.10.1103/PhysRevLett.80.4502
  • Sánchez-Portal D, Artacho E, Soler JM, et al. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Physical Review B. 1999 May 15;59(19):12678.10.1103/PhysRevB.59.12678
  • Qian D, Wagner GJ, Liu WK, et al. Mechanics of carbon nanotubes. Appl Mech Rev. 2002 Nov 1;55(6):495–533.10.1115/1.1490129
  • Servantie J, Gaspard P. Translational dynamics and friction in double-walled carbon nanotubes. Phys Rev B. 2006 Mar 24;73(12):125428.10.1103/PhysRevB.73.125428
  • Wong LH, Zhao Y, Chen G, et al. Grooving the carbon nanotube oscillators. Appl Phys Lett. 2006 May 1;88(18):183107.10.1063/1.2199471
  • Liu P, Zhang Y, Lu C. Oscillatory behavior of C60-nanotube oscillators: a molecular-dynamics study. J Appl Phys. 2005 May 1;97(9):094313.10.1063/1.1890451
  • Legoas SB, Coluci VR, Braga SF, et al. Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators. Phys Rev Lett. 2003 Feb 6;90(5):055504.10.1103/PhysRevLett.90.055504
  • Su H, Goddard WA III, Zhao Y. Dynamic friction force in a carbon peapod oscillator. Nanotechnology. 2006 Nov 7;17(22):5691.10.1088/0957-4484/17/22/026
  • Cox BJ, Thamwattana N, Hill JM. Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences; 2007 Feb 8; The Royal Society. (Vol. 463, No. 2078). p. 461–477
  • Baowan D, Hill JM. Equilibrium locations for nested carbon nanocones. J Math Chem. 2008 May 1;43(4):1489–1504.10.1007/s10910-007-9276-0
  • Baowan D, Hill JM. Gigahertz oscillators constructed from carbon nanocones inside carbon nanotubes. J Comput Theor Nanosci. 2008 Mar 1;5(3):302–310.10.1166/jctn.2008.2472
  • Ansari R, Motevalli B. The effects of geometrical parameters on force distributions and mechanics of carbon nanotubes: A critical study. Commun Nonlinear Sci Numer Simul. 2009 Dec 31;14(12):4246–4263.10.1016/j.cnsns.2009.03.020
  • Ansari R, Motevalli B. On new aspects of nested carbon nanotubes as gigahertz oscillators. J Vib Acoust. 2011 Oct 1;133(5):051003.10.1115/1.4003933
  • Alisafaei F, Ansari R, Rouhi H. Continuum modeling of van der Waals interaction force between carbon nanocones and carbon nanotubes. J Nanotechnol Eng Med. 2011 Aug 1;2(3):031002.10.1115/1.4005485
  • Cox BJ, Thamwattana N, Hill JM. Spherical and spheroidal fullerenes entering carbon nanotubes. Curr Appl Phys. 2008 May 31;8(3):249–252.10.1016/j.cap.2007.10.009
  • Baowan D, Hill JM. Force distribution for double-walled carbon nanotubes and gigahertz oscillators. Z Angew Math Phys. 2007 Sep 1;58(5):857–875.10.1007/s00033-006-6098-z
  • Hilder TA, Hill JM. Carbon nanotubes as drug delivery nanocapsules. Curr Appl Phys. 2008 May 31;8(3-4):258–261.10.1016/j.cap.2007.10.011
  • Thamwattana N, Hill JM. Nanotube bundle oscillators: Carbon and boron nitride nanostructures. Physica B. 2009 Nov 15;404(21):3906–3910.10.1016/j.physb.2009.07.140
  • Hodak M, Girifalco LA. Fullerenes inside carbon nanotubes and multi-walled carbon nanotubes: optimum and maximum sizes. Chem Phys Lett. 2001 Dec 28;350(5):405–411.10.1016/S0009-2614(01)01339-2
  • Girifalco LA, Hodak M, Lee RS. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B. 2000 Nov 15;62(19):13104.10.1103/PhysRevB.62.13104
  • Asemi SR, Farajpour A. Thermo-electro-mechanical vibration of coupled piezoelectric-nanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium. Curr Appl Phys. 2014 May 31;14(5):814–832.10.1016/j.cap.2014.03.012
  • Zeighampour H, Beni YT. Analysis of conical shells in the framework of coupled stresses theory. Int J Eng Sci. 2014 Aug;31(81):107–122.10.1016/j.ijengsci.2014.04.008
  • Zeighampour H, Beni YT, Mehralian F. A shear deformable conical shell formulation in the framework of couple stress theory. Acta Mech. 2015 Aug 1;226(8):2607.10.1007/s00707-015-1318-2
  • Kheibari F, Beni YT. Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model. Mat Des. 2017 Jan;15(114):572–583.10.1016/j.matdes.2016.10.041
  • Tadi Beni Y, Mehralian F. The effect of small scale on the free vibration of functionally graded truncated conical shells. J Mech Mater Struct. 2016 Feb 23;11(2):91–112.10.2140/jomms
  • Arani AG, Mohammadimehr M, Saidi AR, et al. Thermal buckling analysis of double-walled carbon nanotubes considering the small-scale length effect. Proc Instit Mech Eng, Part C: J Mech Eng Sci. 2011 Jan 1;225(1):248–256.
  • Tserpes KI, Papanikos P. Finite element modeling of single-walled carbon nanotubes. Composites Part B: Engineering. 2005 Jul 31;36(5):468–477.10.1016/j.compositesb.2004.10.003
  • Ansari R, Rouhi S, Momen A. Predicting mechanical properties and buckling behavior of single-walled silicon carbide nanocones using a finite element method. Appl Phys A. 2015 Jun 1;119(3):1039–1045.10.1007/s00339-015-9063-x
  • Paradise M, Goswami T. Carbon nanotubes – production and industrial applications. Mater Des. 2007 Dec 31;28(5):1477–1489.10.1016/j.matdes.2006.03.008
  • Sakhaee-Pour A, Ahmadian MT, Vafai A. Vibrational analysis of single-walled carbon nanotubes using beam element. Thin-Walled Struct. 2009 Jul 31;47(6):646–652.10.1016/j.tws.2008.11.002
  • Patel AM, Ardeshana BA, Joshi AY. Classifying the impact of progressively evacuating hexagonal lattices of CC bond in DWCNT-based nano resonators. Mater Technol. 2017 Aug;2:1–9.
  • Fakhrabadi MM, Khani N, Pedrammehr S. Vibrational analysis of single-walled carbon nanocones using molecular mechanics approach. Physica E. 2012 May 31;44(7):1162–1168.10.1016/j.physe.2012.01.004
  • Ansari R, Momen A, Rouhi S, et al. On the vibration of single-walled carbon nanocones: molecular mechanics approach versus molecular dynamics simulations. Shock Vibr. 2014 Jul;14:2014.
  • Yun G, Park HS. A finite element formulation for nanoscale resonant mass sensing using the surface Cauchy-Born model. Comput Methods Appl Mech Eng. 2008 Jul 1;197(41):3324–3336.10.1016/j.cma.2008.01.010
  • Ardeshana B, Jani U, Patel A, et al. An approach to modelling and simulation of single-walled carbon nanocones for sensing applications. AIMS Materials Science. 2017;4(4):1010–1028.
  • Narjabadifam A, Vakili-Tahami F, Zehsaz M. Modal analysis of multi-walled carbon nanocones using molecular dynamics simulation. Comput Mater Sci. 2017;1(137):55–66.10.1016/j.commatsci.2017.05.031
  • Ansari R, Rouhi S, Mirnezhad M, et al. Stability characteristics of single-walled boron nitride nanotubes. Arch Civ Mech Eng. 2015 Jan 31;15(1):162–170.10.1016/j.acme.2014.01.008
  • Ansari R, Rouhi S, Aryayi M. Nanoscale finite element models for vibrations of single-walled carbon nanotubes: atomistic versus continuum. App Math Mech. 2013 Oct 1;34(10):1187–1200.10.1007/s10483-013-1738-6
  • Ansari R, Rouhi S, Mirnezhad M, et al. Studying the buckling and vibration characteristics of single-walled zinc oxide nanotubes using a nanoscale finite element model. Appl Phys A. 2013 Sep 1;112(3):767–774.10.1007/s00339-013-7688-1
  • Ansari R, Rouhi S, Aryayi M. On the vibration of double-walled carbon nanotubes using molecular structural and cylindrical shell models. Int J Mod Phys B. 2016 Feb 20;30(5):1650007.10.1142/S0217979216500077
  • Rouhi S, Pour Reza T, Ramzani B, et al. Investigation of the vibration and buckling of graphynes: A molecular dynamics-based finite element model. Proc Instit Mech Eng, Part C: J Mech Eng Sci. 2017 Mar;231(6):1162–1178.
  • Li C, Chou TW. Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Physical Review B. 2003 Aug 28;68(7):073405.10.1103/PhysRevB.68.073405
  • Roberts JA, Imholt T, Ye Z, et al. Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe. J Appl Phys. 2004 Apr 15;95(8):4352–4356.10.1063/1.1651339
  • Aluru NR. Static and dynamic analysis of carbon nanotube-based switches. Urbana. 2004 Jul;1(51):61801.
  • Jaszczaka JA, Robinson GW, Dimovski S, et al. Naturally occurring graphite cones. Carbon. 2003;41:2085–2092.10.1016/S0008-6223(03)00214-8
  • Cheng-Te Lin, Chi-Young Lee, Hsin-Tien Chiu, et al. Graphene Structure in Carbon Nanocones and Nanodiscs. Langmuir. 2007;23:12806–12810.
  • Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett. 1996;76:2511–2514.10.1103/PhysRevLett.76.2511
  • Yan JW, Li KMD, Liew LHKM, et al. Predicting mechanical properties of single-walled carbon nanocones using a higher-order gradient continuum computational framework. Compos Struct. 2012;94:3271–3277.10.1016/j.compstruct.2012.04.017
  • Patel AM, Joshi AY. Vibration analysis of double wall carbon nanotube based resonators for zeptogram level mass recognition. Comput Mater Sci. 2013 Nov;30(79):230–238.10.1016/j.commatsci.2013.06.022
  • Patel AM, Joshi AY. Investigating the influence of surface deviations in double walled carbon nanotube based nanomechanical sensors. Comput Mater Sci. 2014 Jun;15(89):157–164.10.1016/j.commatsci.2014.03.034
  • Matyushov DV, Schmid R. Calculation of Lennard-Jones energies of molecular fluids. J Chem Phys. 1996 Jun 1;104(21):8627–8638.10.1063/1.471551
  • Li C, Chou TW. Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol. 2003 Aug 31;63(11):1517–1524.10.1016/S0266-3538(03)00072-1
  • Lee JH, Lee BS. Modal analysis of carbon nanotubes and nanocones using FEM. Comput Mater Sci. 2012 Jan 31;51(1):30–42.10.1016/j.commatsci.2011.06.041
  • Baykasoglu C, Celebi AT, Icer E, et al. Vibration and elastic buckling analyses of single-walled carbon nanocones. In: M Papadrakakis, M Kojic, editor, 3rd South-East European conference on computational mechanicsan ECCOMAS and IACM special interest conference; Kos Island, Greece; 2013 Jun. p. 12–14)
  • Patel AM, Joshi AY. Detection of biological objects using dynamic characteristics of double-walled carbon nanotubes. Applied Nanoscience. 2015 Aug 1;5(6):681–695.10.1007/s13204-014-0364-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.