Publication Cover
Materials Technology
Advanced Performance Materials
Volume 35, 2020 - Issue 11-12
356
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Surface modifications of titanium alloy using nanobioceramic-based coatings to improve osseointegration: a review

, ORCID Icon &
Pages 742-751 | Received 30 Apr 2018, Accepted 12 Jun 2018, Published online: 26 Jun 2018

References

  • Choi AH, Ben-Nissan B. Calcium phosphate nanocoatings and nanocomposites, part I: recent developments and advancements in tissue engineering and bioimaging. Nanomedicine. 2015;10:2249–2261.
  • Choi AH, Ben-Nissan B, Matinlinna JP, et al. Current perspective: calcium phosphate nanocoatings and nanocomposite coatings in dentistry. J Dent Res. 2013;92:853–859.
  • Ben-Nissan B, Choi AH. Sol-gel production of bioactive nanocoatings for medical applications: part I: an introduction. Nanomedicine. 2006;1:311–319.
  • Choi AH, Ben-Nissan B. Sol-gel production of bioactive nanocoatings for medical applications: part II: current research and development. Nanomedicine. 2007;2:51–61.
  • Choi AH, Cazalbou S, Ben-Nissan B. Nanobiomaterial coatings in dentistry. In: Deb S, editor. Biomaterials for oral and craniomaxillofacial applications, Frontiers of oral biology. Basel, Switzerland: Karger. Vol. 17. 2015. pp. 49–61.
  • Eger M, Sterer N, Liron T, et al. Scaling of titanium implants entrains inflammation-induced osteolysis. Sci Rep. 2017;7:39612.
  • Ramires PA, Wennerberg A, Johansson CB, et al. Biological behaviour of sol-gel coated dental implants. J Mater Sci Mater Med. 2003;14:539–545.
  • Kim HW, Kim HE, Salih V, et al. Sol-gel-modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses. J Biomed Mater Res A. 2005;74:294–305.
  • Oh S, Tobin E, Yany Y, et al. In vivo evaluation of hydroxyapatite coatings of different crystallinities. Int J Oral Maxillofac Implants. 2005;20:726–731.
  • Zreiqat H, Valenzuela SM, Ben-Nissan B, et al. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials. 2005;26:7579–7586.
  • Sohn SH, Jun HK, Kim CS, et al. Biological responses in osteoblast-like cell line according to thin layer hydroxyapatite coatings on anodized titanium. J Oral Rehabil. 2006;33:898–911.
  • Orsini G, Piattelli M, Scarano A, et al. Randomized, controlled histologic and histomorphometric evaluation of implants with nanometer-scale calcium phosphate added to the dual-etched surface in the human posterior maxilla. J Periodontol. 2007;78:209–218.
  • Jimbo R, Xue Y, Hayashi M, et al. Genetic responses to nanostructured calcium-phosphate-coated implants. J Dent Res. 2011;90:1422–1427.
  • Jimbo R, Coelho PG, Vandeweghe S, et al. Histological and three-dimensional evaluation of osseointegration to nanostructured calcium phosphate-coated implants. Acta Biomater. 2011;7:4229–4234.
  • Roy M, Bandyopadhyay A, Bose S. Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coat Technol. 2011;205:2785–2792.
  • Surmeneva MA, Surmeneva RA, Nikonova YA, et al. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications. Appl Surf Sci. 2014;317:172–180.
  • Chai CS, Ben-Nissan B. Bioactive nanocrystalline sol-gel hydroxyapatite coatings. J Mater Sci Mater Med. 1999;10:465–469.
  • Albee FH, Morrison HF. Studies in bone growth. Ann Surg. 1920;71:32.
  • Hench LL. Bioceramics. J Am Ceram Soc. 1998;81:1705–1728.
  • Hench LL, Hench JW, Greenspan DC. Bioglass: a short history and bibliography. J Aust Ceram Soc. 2004;40:1–43.
  • Hench LL, West JK. The sol-gel process. Chem Rev. 1990;90:33–72.
  • Ducheyne P, Hench LL, Kagan A 2nd, et al. Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants. J Biomed Mater Res. 1980;14:225–237.
  • de Groot KR, Geesink R, Klein CPAT, et al. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res. 1987;21:1375–1381.
  • Kokubo T, Kim HM, Kawashita M, et al. Novel ceramics for biomedical applications. J Aust Ceram Soc. 2000;36:37–46.
  • Dorozhkin SV. Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine. Materials. 2009;2:1975–2045.
  • Gadow R, Killinger A, Stiegler N. Hydroxyapatite coatings for biomedical applications deposited by different thermal spray techniques. Surf Coat Technol. 2010;205:1157–1164.
  • Oonishi H, Yamamoto M, Ishimaru H, et al. The effect of hydroxyapatite coating on bone growth into porous titanium implants. J Bone Joint Surg Br. 1989;71:213–216.
  • Harris MT, Byers CH, Brunson RR. A study of solvent effects on the synthesis of pure component and composite ceramic powders by metal alkoxide hydrolysis. Mat Res Soc Symp Proc. 1988;121:287–292.
  • de Kambilly H, Klein LC. Effect of methanol concentration on lithium aluminosilicates. J Noncryst Solids. 1989;109:69–78.
  • Lavenus S, Louarn G, Layrolle P. Nanotechnology and dental implants. Int J Biomater. 2010;2010:915327.
  • Tatullo M, Marrelli M, Paduano F. The regenerative medicine in oral and maxillofacial surgery: the most important innovations in the clinical application of mesenchymal stem cells. Int J Med Sci. 2015;12:72–77.
  • Rocha DN, Rlsb M, Barbosa RM, et al. Mesenchymal stem cells associated with bioceramics for bone tissue regeneration. Biomater Med Appl. 2017;1:2.
  • Lucaciu O, Soriţău O, Gheban D, et al. Dental follicle stem cells in bone regeneration on titanium implants. BMC Biotechnol. 2015;15:114.
  • Singh K The characterisation of adipose derived stem cells on coralline scaffolds for bone tissue engineering [dissertation]. Sydney (Australia): University of Technology Sydney; 2017.
  • Gonzalez-McQuire R, Green DW, Partridge KA, et al. Coating of human mesenchymal cells in 3D culture with bioinorganic nanoparticles promotes osteoblastic differentiation and gene transfection. Adv Mater. 2007;19:2236–2240.
  • Croteau S, Rauch F, Silvestri A, et al. Bone morphogenetic proteins in orthopedics: from basic science to clinical practice. Orthopaedics. 1999;22:686–695.
  • Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004;22:233-41.
  • Toriumi DM, Kotler HS, Luxenberg DP, et al. Mandibular reconstruction with a recombinant bone-inducing factor. Functional, histologic, and biomechanical evaluation. Arch Otolaryngol Head Neck Surg. 1991;117:1101–1112.
  • Howell TH, Fiorellini J, Jones A, et al. A feasibility study evaluating rhBMP-2/absorbable collagen sponge device for local alveolar ridge preservation or augmentation. Int J Periodontics Restorative Dent. 1997;17:124–139.
  • Boyne PJ, Marx RE, Nevins M, et al. A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int J Periodontics Restorative Dent. 1997;17:11–25.
  • Hanisch O, Tatakis DN, Boskovic MM, et al. Bone formation and reosseointegration in peri-implantitis defects following surgical implantation of rhBMP-2. Int J Oral Maxillofac Implants. 1997;12:604–610.
  • Sigurdsson TJ, Fu E, Tatakis DN, et al. Bone morphogenetic protein-2 for peri-implant bone regeneration and osseointegration. Clin Oral Implants Res. 1997;8:367–374.
  • Cochran DL, Schenk R, Buser D, et al. Recombinant human bone morphogenetic protein-2 stimulation of bone formation around endosseous dental implants. J Periodontol. 1999;70:139–150.
  • Liu Y, de Groot K, Hunziker E. B. EBBMP-2. liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone. 2005;36:745–757.
  • Liu Y, Enggist L, Kuffer AF, et al. The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration. Biomaterials. 2007;28:2677–2686.
  • Ramazannoglu M, Lutz R, Ergun C, et al. The effect of combined delivery of recombinant human bone morphogenetic protein-2 and recombinant human vascular endothelial growth factor 165 from biomimetic calcium-phosphate-coated implants on osseointegration. Clin Oral Implants Res. 2011;22:1433–1439.
  • Bae SE, Choi J, Joung YK, et al. Controlled release of bone morphogenetic protein (BMP)-2 from nanocomplex incorporated on hydroxyapatite-formed titanium surface. J Control Release. 2012;160:676–684.
  • Yoo D, Tovar N, Jimbo R, et al. Increased osseointegration effect of bone morphogenetic protein 2 on dental implants: an in vivo study. J Biomed Mater Res A. 2014;102:1921–1927.
  • de Jonge LT, Leeuwenburgh SC, van den Beucken JJ, et al. The osteogenic effect of electrosprayed nanoscale collagen/calcium phosphate coatings on titanium. Biomaterials. 2010;31:2461–2469.
  • Uezono M, Takakuda K, Kikuchi M, et al. Hydroxyapatite/collagen nanocomposite-coated titaniumrod for achieving rapid osseointegration ontobone surface. J Biomed Mater Res B Appl Biomater. 2013;101:1031–1038.
  • Goodman SB, Yao Z, Keeney M, et al. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34:3174–3183.
  • Roessler S, Born R, Scharnweber D, et al. Biomimetic coatings functionalized with adhesion peptides for dental implants. J Mater Sci Mater Med. 2001;12:871–877.
  • Itoh D, Yoneda S, Kuroda S, et al. Enhancement of osteogenesis on hydroxyapatite surface coated with synthetic peptide (EEEEEEEPRGDT) in vitro. J Biomed Mater Res. 2002;62:292–298.
  • Lutz R, Srour S, Nonhoff J, et al. Biofunctionalization of titanium implants with a biomimetic active peptide (P-15) promotes early osseointegration. Clin Oral Implants Res. 2010;21:726–734.
  • Coelho PG, Teixeira HS, Marin C, et al. The in vivo effect of P-15 coating on early osseointegration. J Biomed Mater Res B Appl Biomater. 2014;102:430–440.
  • Hennessy KM, Clem WC, Phipps MC, et al. The effect of RGD peptides on osseointegration of hydroxyapatite biomaterials. Biomaterials. 2008;29:3075–3083.
  • Huang JS, Liu KM, Chen CC, et al. Liposomes-coated hydroxyapatite and tricalcium phosphate implanted in the mandibular bony defect of miniature swine. Kaohsiung J Med Sci. 1997;13:213–228.
  • Ben-Nissan B, Macha I, Cazalbou S, et al. Calcium phosphate nanocoatings and nanocomposites, part 2: thin films for slow drug delivery and osteomyelitis. Nanomedicine. 2016;11:531–544.
  • Macha I, Cazalbou S, Ben-Nissan B, et al. Marine structure derived calcium phosphate-polymer biocomposites for local antibiotic delivery. Mar Drugs. 2015;13:666–680.
  • Karacan I, Macha I, Choi G, et al. Antibiotic containing Poly Lactic Acid/Hydroxyapatite biocomposite coatings for dental implant applications. Key Eng Mater. 2017;758:120–125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.