Publication Cover
Materials Technology
Advanced Performance Materials
Volume 34, 2019 - Issue 2
726
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Nanomaterials in microfluidics for disease diagnosis and therapy development

ORCID Icon &
Pages 92-116 | Received 04 Sep 2018, Accepted 15 Sep 2018, Published online: 03 Oct 2018

References

  • Altintas Z. Biosensors and nanotechnology: applications in health care diagnostics. 2018 John Wiley & Sons, Inc.
  • Oliveira ON, Iost RM, Siqueira JR, et al. Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. Acs Appl Mater Inter. 2014;6:14745–14766.
  • Stark WJ. Nanoparticles in biological systems. Angew Chem Int Edit. 2011;50:1242–1258.
  • Chen HM, Zhang WZ, Zhu GZ, et al. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017;2. pii:17024.
  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7:653–664.
  • Sun TM, Zhang YS, Pang B, et al. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Edit. 2014;53:12320–12364.
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1. pii:16014.
  • Zaimy MA, Saffarzadeh N, Mohammadi A, et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 2017;24:233–243.
  • Hernandez-Pedro NY, Rangel-Lopez E, Magana-Maldonado R, et al. Application of nanoparticles on diagnosis and therapy in gliomas. Biomed Res Int. 2013;2013. pii:351031.
  • Leng F, Liu F, Yang YT, et al. Strategies on Nanodiagnostics and Nanotherapies of the Three Common Cancers. Nanomaterials-Basel. 2018;8. pii:E20.
  • Garbayo E, de Mendoza AEH, Blanco-Prieto MJ. Diagnostic and therapeutic uses of nanomaterials in the brain. Curr Med Chem. 2014;21:4100–4131.
  • Song Y, Cheng D, Zhao L. Microfluidics fundamentals devices and applications. 2018 Wiley-VCH Verlag GmbH & Co. KGaA.
  • Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–189.
  • Dou MW, Sanjay ST, Dominguez DC, et al. Multiplexed instrument-free meningitis diagnosis on a polymer/paper hybrid microfluidic biochip. Biosens Bioelectron. 2017;87:865–873.
  • Sanjay ST, Dou MW, Sun JJ, et al. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers. Sci Rep-Uk. 2016;6. ppi:30474.
  • Jung W, Han J, Choi J-W, et al. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron Eng. 2015;132:46–57.
  • Wu J, Chen Q, Lin J-M. Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst. 2017;142:421–441.
  • Zhang J, Wei XF, Zeng R, et al. Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Futur Sci Oa. 2017;3.FSO187.
  • Patil SS, Misra RDK. The significance of macromolecular architecture in governing structure-property relationship for biomaterial applications: an overview. Mater Technol. 2018;33:364–386.
  • Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32:760–772.
  • Huh D, Matthews BD, Mammoto A, et al. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662–1668.
  • Mosig AS. Organ-on-chip models: new opportunities for biomedical research. Futur Sci Oa. 2017;3.FSO130.
  • Choi J-H, Lee J, B-K O. Nanomaterial-based in vitro analytical system for diagnosis and therapy in microfluidic device. BioChip Journal. 2016;10:331–345.
  • Damhorst GL, Murtagh M, Rodriguez WR, et al. Microfluidics and nanotechnology for detection of global infectious diseases. P Ieee. 2015;103:150–160.
  • Atkinson AJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.
  • Acimovic SS, Ortega MA, Sanz V, et al. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett. 2014;14:2636–2641.
  • Escobedo C, Chou YW, Rahman M, et al. Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. Analyst. 2013;138:1450–1458.
  • Zhao Z, Yang Y, Zeng Y, et al. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. 2016;16:489–496.
  • Zheng G, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 2005;23:1294–1301.
  • Ortega FG, Fernández-Baldo MA, Serrano MJ, et al. Epithelial cancer biomarker EpCAM determination in peripheral blood samples using a microfluidic immunosensor based in silver nanoparticles as platform. Sensors and Actuators B: Chemical. 2015;221:248–256.
  • Uludag Y, Köktürk G. Determination of prostate-specific antigen in serum samples using gold nanoparticle based amplification and lab-on-a-chip based amperometric detection. Microchimica Acta. 2015;182:1685–1691.
  • Chikkaveeraiah BV, Bhirde AA, Morgan NY, et al. Electrochemical immunosensors for detection of cancer protein biomarkers. Acs Nano. 2012;6:6546–6561.
  • Malhotra R, Patel V, Chikkaveeraiah BV, et al. Ultrasensitive detection of cancer biomarkers in the clinic by use of a nanostructured microfluidic array. Anal Chem. 2012;84:6249–6255.
  • Chikkaveeraiah BV, Mani V, Patel V, et al. Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens Bioelectron. 2011;26:4477–4483.
  • Sardesai NP, Kadimisetty K, Faria R, et al. A microfluidic electrochemiluminescent device for detecting cancer biomarker proteins. Anal Bioanal Chem. 2013;405:3831–3838.
  • Feng X, Gan N, Zhou J, et al. A novel dual-template molecularly imprinted electrochemiluminescence immunosensor array using Ru(bpy)32+-Silica@Poly-L-lysine-Au composite nanoparticles as labels for near-simultaneous detection of tumor markers. Electrochimica Acta. 2014;139:127–136.
  • Ali MA, Mondal K, Jiao Y, et al. Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Appl Mater Interfaces. 2016;8:20570–20582.
  • Tang CK, Vaze A, Shen M, et al. High-Throughput electrochemical microfluidic immunoarray for multiplexed detection of cancer biomarker proteins. ACS Sens. 2016;1:1036–1043.
  • Wu Y, Xue P, Kang Y, et al. Paper-based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Anal Chem. 2013;85:8661–8668.
  • Lu N, Gao A, Dai P, et al. Ultrasensitive detection of dual cancer biomarkers with integrated CMOS-compatible nanowire arrays. Anal Chem. 2015;87:11203–11208.
  • Hasanzadeh M, Shadjou N, Eskandani M, et al. Electrochemical nano-immunosensing of effective cardiac biomarkers for acute myocardial infarction. Trac-Trend Anal Chem. 2013;49:20–30.
  • Mohammed MI, Desmulliez MPY. Autonomous capillary microfluidic system with embedded optics for improved troponin I cardiac biomarker detection. Biosens Bioelectron. 2014;61:478–484.
  • Joung HA, Yk O, Kim MG. An automatic enzyme immunoassay based on a chemiluminescent lateral flow immunosensor. Biosens Bioelectron. 2014;53:330–335.
  • Lian J, Chen S, Qiu YQ, et al. A fully automated in vitro diagnostic system based on magnetic tunnel junction arrays and superparamagnetic particles. J Appl Phys. 2012;111.
  • Aung A, Bhullar IS, Theprungsirikul J, et al. 3D cardiac mu tissues within a microfluidic device with real-time contractile stress readout. Lab Chip. 2016;16:153–162.
  • Marsano A, Conficconi C, Lemme M, et al. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip. 2016;16:599–610.
  • Shin SR, Zhang YS, Kim DJ, et al. Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal Chem. 2016;88:10019–10027.
  • Bruls DM, Evers TH, Kahlman JA, et al. Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles. Lab Chip. 2009;9:3504–3510.
  • Han KN, Le TH, Pham XH, et al. Immunoassay of cardiac biomarkers using a photodiode array biochip. Sensor Actuat B-Chem. 2015;207:470–476.
  • Dong M, Wu J, Ma Z, et al. Rapid and low-cost CRP measurement by integrating a paper-based microfluidic immunoassay with smartphone (CRP-Chip). Sensors (Basel). 2017;17.
  • Zhou F, Lu M, Wang W, et al. Electrochemical immunosensor for simultaneous detection of dual cardiac markers based on a poly(dimethylsiloxane)-gold nanoparticles composite microfluidic chip: a proof of principle. Clin Chem. 2010;56:1701–1707.
  • Singh N, Ali MA, Rai P, et al. Microporous nanocomposite enabled microfluidic biochip for cardiac biomarker detection. ACS Appl Mater Interfaces. 2017;9:33576–33588.
  • Horak J, Dincer C, Qelibari E, et al. Polymer-modified microfluidic immunochip for enhanced electrochemical detection of troponin I. Sensors and Actuators B: Chemical. 2015;209:478–485.
  • Lee I, Luo X, Huang J, et al. Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors. Biosensors (Basel). 2012;2:205–220.
  • Zhang GJ, Luo ZH, Huang MJ, et al. An integrated chip for rapid, sensitive, and multiplexed detection of cardiac biomarkers from fingerprick blood. Biosens Bioelectron. 2011;28:459–463.
  • Dinarello CA. Historical insights into cytokines. Eur J Immunol. 2007;37:S34–S45.
  • Lefkowitz DL, Lefkowitz SS. Macrophage-neutrophil interaction: A paradigm for chronic inflammation revisited. Immunol Cell Biol. 2001;79:502–506.
  • Stenken JA, Poschenrieder AJ. Bioanalytical chemistry of cytokines–a review. Anal Chim Acta. 2015;853:95–115.
  • Bienvenu J, Monneret G, Fabien N, et al. The clinical usefulness of the measurement of cytokines. Clin Chem Lab Med. 2000;38:267–285.
  • Liu G, Qi M, Hutchinson MR, et al. Recent advances in cytokine detection by immunosensing. Biosens Bioelectron. 2016;79:810–821.
  • Chen P, Huang NT, Chung MT, et al. Label-free cytokine micro- and nano-biosensing towards personalized medicine of systemic inflammatory disorders. Adv Drug Deliv Rev. 2015;95:90–103.
  • Konry T, Dominguez-Villar M, Baecher-Allan C, et al. Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosens Bioelectron. 2011;26:2707–2710.
  • Abe K, Hashimoto Y, Yatsushiro S, et al. Simultaneous immunoassay analysis of plasma IL-6 and TNF-alpha on a microchip. PLoS One. 2013;8:e53620.
  • Huang NT, Chen W, Oh BR, et al. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip. 2012;12:4093–4101.
  • He J, Boegli M, Bruzas I, et al. Patterned plasmonic nanoparticle arrays for microfluidic and multiplexed biological assays. Anal Chem. 2015;87:11407–11414.
  • Oh BR, Huang NT, Chen WQ, et al. Integrated nanoplasmonic sensing for cellular functional immunoanalysis using human blood. Acs Nano. 2014;8:2667–2676.
  • Chen PY, Chung MT, McHugh W, et al. Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. Acs Nano. 2015;9:4173–4181.
  • Song Y, Chen P, Chung MT, et al. AC electroosmosis-enhanced nanoplasmofluidic detection of ultralow-concentration cytokine. Nano Lett. 2017;17:2374–2380.
  • Krause CE, Otieno BA, Bishop GW, et al. Ultrasensitive microfluidic array for serum pro-inflammatory cytokines and C-reactive protein to assess oral mucositis risk in cancer patients. Anal Bioanal Chem. 2015;407:7239–7243.
  • Qi M, Zhang Y, Cao C, et al. Decoration of reduced graphene oxide nanosheets with aryldiazonium salts and gold nanoparticles toward a label-free amperometric immunosensor for detecting cytokine tumor necrosis factor-alpha in live cells. Anal Chem. 2016;88:9614–9621.
  • Lu W, Yuan QP, Yang ZL, et al. Self-primed isothermal amplification for genomic DNA detection of human papillomavirus. Biosens Bioelectron. 2017;90:258–263.
  • Park BH, Oh SJ, Jung JH, et al. An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics. Biosens Bioelectron. 2017;91:334–340.
  • Zhou QF, Zheng J, Qing ZH, et al. Detection of circulating tumor dna in human blood via dna-mediated surface-enhanced raman spectroscopy of single-walled carbon nanotubes. Anal Chem. 2016;88:4759–4765.
  • Wang Q, Wang H, Yang XH, et al. Multiplex detection of nucleic acids using a low cost microfluidic chip and a personal glucose meter at the point-of-care. Chem Commun. 2014;50:3824–3826.
  • Jung YK, Kim J, Mathies RA. Microfluidic linear hydrogel array for multiplexed single nucleotide polymorphism (SNP) detection. Anal Chem. 2015;87:3165–3170.
  • Bezuidenhout LW, Nazemifard N, Jemere AB, et al. Microchannels filled with diverse micro- and nanostructures fabricated by glancing angle deposition. Lab Chip. 2011;11:1671–1678.
  • Thompson AM, Gansen A, Paguirigan AL, et al. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells. Anal Chem. 2014;86:12308–12314.
  • Zanoli LM, D’Agata R, Spoto G. Functionalized gold nanoparticles for ultrasensitive DNA detection. Anal Bioanal Chem. 2012;402:1759–1771.
  • Mancuso M, Jiang L, Cesarman E, et al. Multiplexed colorimetric detection of Kaposi’s sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. Nanoscale. 2013;5:1678–1686.
  • Ansari MIH, Hassan S, Qurashi A, et al. Microfluidic-integrated DNA nanobiosensors. Biosens Bioelectron. 2016;85:247–260.
  • Chen W, Fang X, Li H, et al. DNA-mediated inhibition of peroxidase-like activities on platinum nanoparticles for simple and rapid colorimetric detection of nucleic acids. Biosens Bioelectron. 2017;94:169–175.
  • Bernacka-Wojcik I, Lopes P, Catarina Vaz A, et al. Bio-microfluidic platform for gold nanoprobe based DNA detection–application to Mycobacterium tuberculosis. Biosens Bioelectron. 2013;48:87–93.
  • Mancuso M, Cesarman E, Erickson D. Detection of Kaposi’s sarcoma associated herpesvirus nucleic acids using a smartphone accessory. Lab Chip. 2014;14:3809–3816.
  • Park T, Lee S, Seong GH, et al. Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. Lab Chip. 2005;5:437–442.
  • Yazdi SH, Giles KL, White IM. Multiplexed detection of DNA sequences using a competitive displacement assay in a microfluidic SERRS-based device. Anal Chem. 2013;85:10605–10611.
  • Prado E, Colin A, Servant L, et al. SERS spectra of oligonucleotides as fingerprints to detect label-free rna in microfluidic devices. J Phys Chem C. 2014;118:13965–13971.
  • Mousavi MZ, Chen HY, Lee KL, et al. Urinary micro-RNA biomarker detection using capped gold nanoslit SPR in a microfluidic chip. Analyst. 2015;140:4097–4104.
  • Peng HI, Strohsahl CM, Bl M. Microfluidic nanoplasmonic-enabled device for multiplex DNA detection. Lab Chip. 2012;12:1089–1093.
  • Zhu H, Wang G, Xie D, et al. Au nanoparticles enhanced fluorescence detection of DNA hybridization in picoliter microfluidic droplets. Biomed Microdevices. 2014;16:479–485.
  • Olcer Z, Esen E, Ersoy A, et al. Microfluidics and nanoparticles based amperometric biosensor for the detection of cyanobacteria (Planktothrix agardhii NIVA-CYA 116) DNA. Biosens Bioelectron. 2015;70:426–432.
  • Zitka O, Skalickova S, Rodrigo MAM, et al. Sequences of pandemic-causing viruses isolated and detected by paramagnetic particles coupled with microfluidic system and electrochemical detector. Int J Electrochem Sc. 2013;8:12628–12642.
  • Esfandyarpour R, DiDonato MJ, Yang Y, et al. Multifunctional, inexpensive, and reusable nanoparticle-printed biochip for cell manipulation and diagnosis. Proc Natl Acad Sci U S A. 2017;114:E1306–E1315.
  • Gao Y, Yuan Z. Nanotechnology for the detection and kill of circulating tumor cells. Nanoscale Res Lett. 2014;9.
  • Emaminejad S, Javanmard M, Dutton RW, et al. Microfluidic diagnostic tool for the developing world: contactless impedance flow cytometry. Lab Chip. 2012;12:4499–4507.
  • Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY. Recent advances in microparticle continuous separation. Iet Nanobiotechnol. 2008;2:1–13.
  • Wei HB, Chueh BH, Wu HL, et al. Particle sorting using a porous membrane in a microfluidic device. Lab Chip. 2011;11:238–245.
  • Nagrath S, Sequist LV, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–U10.
  • Chen YC, Li P, Huang PH, et al. Rare cell isolation and analysis in microfluidics. Lab Chip. 2014;14:626–645.
  • Plaks V, Koopman CD, Werb Z. Circulating Tumor Cells. Science. 2013;341:1186–1188.
  • Alix-Panabieres C, Pantel K. OPINION Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;14:623–631.
  • Shen ZY, Wu A, Chen XY. Current detection technologies for circulating tumor cells. Chem Soc Rev. 2017;46:2038–2056.
  • Green BJ, Safaei TS, Mepham A, et al. Beyond the capture of circulating tumor cells: next-generation devices and materials. Angew Chem Int Edit. 2016;55:1252–1265.
  • Zhang YQ, Wu MH, Han X, et al. High-Throughput, label-free isolation of cancer stem cells on the basis of cell adhesion capacity. Angew Chem Int Edit. 2015;54:10838–10842.
  • Qian WY, Zhang Y, Chen WQ. Capturing cancer: emerging microfluidic technologies for the capture and characterization of circulating tumor cells. Small. 2015;11:3850–3872.
  • Yoon HJ, Kozminsky M, Nagrath S. Emerging role of nanomaterials in circulating tumor cell isolation and analysis. Acs Nano. 2014;8:1995–2017.
  • Sun D, Chen Z, Wu M, et al. Nanomaterial-based microfluidic chips for the capture and detection of circulating tumor cells. Nanotheranostics. 2017;1:389–402.
  • Wang LX, Asghar W, Demirci U, et al. Nanostructured substrates for isolation of circulating tumor cells. Nano Today. 2013;8:374–387.
  • Wang S, Wang H, Jiao J, et al. Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew Chem Int Ed Engl. 2009;48:8970–8973.
  • Wang S, Liu K, Liu J, et al. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed Engl. 2011;50:3084–3088.
  • Lee SK, Kim GS, Wu Y, et al. Nanowire substrate-based laser scanning cytometry for quantitation of circulating tumor cells. Nano Lett. 2012;12:2697–2704.
  • Sun N, Li X, Wang Z, et al. A multiscale TiO2 nanorod array for ultrasensitive capture of circulating tumor cells. ACS Appl Mater Interfaces. 2016;8:12638–12643.
  • Liu H, Li Y, Sun K, et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J Am Chem Soc. 2013;135:7603–7609.
  • Shen Q, Xu L, Zhao L, et al. Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates. Adv Mater. 2013;25:2368–2373.
  • Hou S, Zhao H, Zhao L, et al. Capture and stimulated release of circulating tumor cells on polymer-grafted silicon nanostructures. Adv Mater. 2013;25:1547–1551.
  • Pallaoro A, Hoonejani MR, Braun GB, et al. Rapid identification by surface-enhanced raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. Acs Nano. 2015;9:4328–4336.
  • Sheng WA, Chen T, Tan WH, et al. Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices. Acs Nano. 2013;7:7067–7076.
  • Liu W, Wei H, Lin Z, et al. Rare cell chemiluminescence detection based on aptamer-specific capture in microfluidic channels. Biosens Bioelectron. 2011;28:438–442.
  • Park MH, Reategui E, Li W, et al. Enhanced isolation and release of circulating tumor cells using nanoparticle binding and ligand exchange in a microfluidic chip. J Am Chem Soc. 2017;139:2741–2749.
  • Xiao Y, Zhou H, Xuan N, et al. Effective and selective cell retention and recovery from whole blood by electroactive thin films. ACS Appl Mater Interfaces. 2014;6:20804–20811.
  • Poudineh M, Aldridge PM, Ahmed S, et al. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat Nanotechnol. 2017;12:274–281.
  • Kim S, Han SI, Park MJ, et al. Circulating tumor cell microseparator based on lateral magnetophoresis and immunomagnetic nanobeads. Anal Chem. 2013;85:2779–2786.
  • Wu C-H, Huang -Y-Y, Chen P, et al. Versatile Immunomagnetic nanocarrier platform for capturing cancer cells. Acs Nano. 2013;7:8816–8823.
  • Poudineh M, Labib M, Ahmed S, et al. Profiling functional and biochemical phenotypes of circulating tumor cells using a two-dimensional sorting device. Angew Chem Int Edit. 2017;56:163–168.
  • Yoon HJ, Kim TH, Zhang Z, et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol. 2013;8:735–741.
  • Yu X, He R, Li S, et al. Magneto-controllable capture and release of cancer cells by using a micropillar device decorated with graphite oxide-coated magnetic nanoparticles. Small. 2013;9:3895–3901.
  • Boyle DS, Hawkins KR, Steele MS, et al. Emerging technologies for point-of-care CD4 T-lymphocyte counting. Trends Biotechnol. 2012;30:45–54.
  • Gao D, Li H-F, Guo G-S, et al. Magnetic bead based immunoassay for enumeration of CD4+ T lymphocytes on a microfluidic device. Talanta. 2010;82:528–533.
  • Wei Q, McLeod E, Qi H, et al. On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography. Sci Rep. 2013;3:1699.
  • Catala C, Mir-Simon B, Feng X, et al. Online SERS quantification of staphylococcus aureusand the application to diagnostics in human fluids. Advanced Materials Technologies. 2016;1: 1600163
  • Lee JJ, Jeong KJ, Hashimoto M, et al. Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano Lett. 2014;14:1–5.
  • Yan J, Yan M, Ge L, et al. A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative. Chem Commun (Camb). 2013;49:1383–1385.
  • Kumar A, Hens A, Arun RK, et al. A paper based microfluidic device for easy detection of uric acid using positively charged gold nanoparticles. Analyst. 2015;140:1817–1821.
  • Zhang X, Yin H, Cooper JM, et al. Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques. Anal Bioanal Chem. 2008;390:833–840.
  • Garcia-Carmona L, Rojas D, Gonzalez MC, et al. Microchip in situ electrosynthesis of silver metallic oxide clusters for ultra-FAST detection of galactose in galactosemic newborns’ urine samples. Analyst. 2016;141:6002–6007.
  • Liu J, Zhao J, Petrochenko P, et al. Sensitive detection of influenza viruses with Europium nanoparticles on an epoxy silica sol-gel functionalized polycarbonate-polydimethylsiloxane hybrid microchip. Biosens Bioelectron. 2016;86:150–155.
  • Sheng J, Zhang L, Lei J, et al. Fabrication of tunable microreactor with enzyme modified magnetic nanoparticles for microfluidic electrochemical detection of glucose. Anal Chim Acta. 2012;709:41–46.
  • Nunez-Bajo E, Blanco-Lopez MC, Costa-Garcia A, et al. In situ gold-nanoparticle electrogeneration on gold films deposited on paper for non-enzymatic electrochemical determination of glucose. Talanta. 2018;178:160–165.
  • Torul H, Ciftci H, Cetin D, et al. Paper membrane-based SERS platform for the determination of glucose in blood samples. Anal Bioanal Chem. 2015;407:8243–8251.
  • Wisitsoraat A, Sritongkham P, Karuwan C, et al. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor. Biosens Bioelectron. 2010;26:1514–1520.
  • Nantaphol S, Chailapakul O, Siangproh W. A novel paper-based device coupled with a silver nanoparticle-modified boron-doped diamond electrode for cholesterol detection. Anal Chim Acta. 2015;891:136–143.
  • Azahar Ali M, Srivastava S, Solanki PR, et al. Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor. Appl Phys Lett. 2012;101.
  • Kaur G, Tomar M, Gupta V. A simple paper based microfluidic electrochemical biosensor for point-of-care cholesterol diagnostics. Physica Status Solidi (A). 2017;214.
  • Liu W, Luo J, Guo Y, et al. Nanoparticle coated paper-based chemiluminescence device for the determination of L-cysteine. Talanta. 2014;120:336–341.
  • Ge L, Wang S, Yu J, et al. Molecularly imprinted polymer grafted porous au-paper electrode for an microfluidic electro-analytical origami device. Adv Funct Mater. 2013;23:3115–3123.
  • Pm V, Oc F, Karnik R, et al. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol. 2012;7:623–629.
  • Wang Y, Cuzzucoli F, Escobar A, et al. Tumor-on-a-chip platforms for assessing nanoparticle-based cancer therapy. Nanotechnology. 2018;29:332001.
  • Capretto L, Carugo D, Mazzitelli S, et al. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv Drug Deliv Rev. 2013;65:1496–1532.
  • Kang D-K, Monsur Ali M, Zhang K, et al. Droplet microfluidics for single-molecule and single-cell analysis in cancer research, diagnosis and therapy. TrAC Trends Anal Chem. 2014;58:145–153.
  • Yang Z, Yu B, Zhu J, et al. A microfluidic method to synthesize transferrin-lipid nanoparticles loaded with siRNA LOR-1284 for therapy of acute myeloid leukemia. Nanoscale. 2014;6:9742–9751.
  • Ogawara K, Higaki K. Nanoparticle-based photodynamic therapy: current status and future application to improve outcomes of cancer treatment. Chem Pharm Bull. 2017;65:637–641.
  • Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem Rev. 2015;115:1990–2042.
  • Chudy M, Tokarska K, Jastrzębska E, et al. Lab-on-a-chip systems for photodynamic therapy investigations. Biosens Bioelectron. 2018;101:37–51.
  • Yoon HK, Lou X, Chen Y-C, et al. Nano-photosensitizers engineered to generate a tunable mix of reactive oxygen species, for optimizing photodynamic therapy, using a microfluidic device. Chem Mater. 2014;26:1592–1600.
  • Jastrzebska E, Bulka M, Rybicka N, et al. Analysis of the efficiency of photodynamic therapy using a microsystem for mono-, co- and mixed cultures. Sensors and Actuators B: Chemical. 2015;221:1356–1365.
  • Tokarska K, Bulka M, Bazylinska U, et al. Evaluation of nanoencapsulated verteporfin’s cytotoxicity using a microfluidic system. J Pharm Biomed Anal. 2016;127:39–48.
  • Yang Y, Yang X, Zou J, et al. Evaluation of photodynamic therapy efficiency using an in vitro three-dimensional microfluidic breast cancer tissue model. Lab Chip. 2015;15:735–744.
  • Zuchowska A, Jastrzebska E, Chudy M, et al. 3D lung spheroid cultures for evaluation of photodynamic therapy (PDT) procedures in microfluidic Lab-on-a-Chip system. Anal Chim Acta. 2017;990:110–120.
  • Chen YC, Lou X, Zhang Z, et al. High-throughput cancer cell sphere formation for characterizing the efficacy of photo dynamic therapy in 3D cell cultures. Sci Rep. 2015;5:12175.
  • Lou X, Kim G, Yoon HK, et al. A high-throughput photodynamic therapy screening platform with on-chip control of multiple microenvironmental factors. Lab Chip. 2014;14:892–901.
  • Park GS, Kwon H, Kwak DW, et al. Full surface embedding of gold clusters on silicon nanowires for efficient capture and photothermal therapy of circulating tumor cells. Nano Lett. 2012;12:1638–1642.
  • Yao X, Niu X, Ma K, et al. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small. 2017;13: 1602225
  • Ortiz de Solorzano I, Prieto M, Mendoza G, et al. Microfluidic synthesis and biological evaluation of photothermal biodegradable copper sulfide nanoparticles. ACS Appl Mater Interfaces. 2016;8:21545–21554.
  • Rao L, Cai B, Bu LL, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano. 2017;11:3496–3505.
  • Lee JM, Seo HI, Bae JH, et al. Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration. Electrophoresis. 2017;38:1318–1324.
  • Fang C, Shao L, Zhao Y, et al. A gold nanocrystal/poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips. Adv Mater. 2012;24:94–98.
  • Sanjay ST, Zhou W, Dou M, et al. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev. 2018;128:3–28.
  • Pm V, Em P, Rhee M, et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. Acs Nano. 2013;7:10671–10680.
  • Zhang L, Feng Q, Wang JL, et al. Microfluidic synthesis of hybrid nanoparticles with controlled lipid layers: understanding flexibility-regulated cell-nanoparticle interaction. Acs Nano. 2015;9:9912–9921.
  • Li Y, Lee RJ, Huang X, et al. Single-step microfluidic synthesis of transferrin-conjugated lipid nanoparticles for siRNA delivery. Nanomedicine. 2017;13:371–381.
  • Martins C, Araujo F, Gomes MJ, et al. Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. Eur J Pharm Biopharm. 2018.
  • Kamaly N, Fredman G, Fojas JJ, et al. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano. 2016;10:5280–5292.
  • Zhang L, Feng Q, Wang J, et al. Microfluidic synthesis of rigid nanovesicles for hydrophilic reagents delivery. Angew Chem Int Ed Engl. 2015;54:3952–3956.
  • Kong F, Zhang X, Zhang H, et al. Inhibition of multidrug resistance of cancer cells by co-delivery of dna nanostructures and drugs using porous silicon nanoparticles@giant liposomes. Adv Funct Mater. 2015;25:3330–3340.
  • Feng Q, Liu J, Li X, et al. One-step microfluidic synthesis of nanocomplex with tunable rigidity and acid-switchable surface charge for overcoming drug resistance. Small. 2017;13: 1603109
  • Kwak B, Ozcelikkale A, Shin CS, et al. Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip. J Control Release. 2014;194:157–167.
  • Lee J, Sharei A, Sim WY, et al. Nonendocytic delivery of functional engineered nanoparticles into the cytoplasm of live cells using a novel, high-throughput microfluidic device. Nano Lett. 2012;12:6322–6327.
  • Liu W, Wang JC, Wang J. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics. Lab Chip. 2015;15:1195–1204.
  • Shin K, Klosterhoff BS, Han B. Characterization of cell-type-specific drug transport and resistance of breast cancers using tumor-microenvironment-on-chip. Mol Pharm. 2016;13:2214–2223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.