Publication Cover
Materials Technology
Advanced Performance Materials
Volume 35, 2020 - Issue 11-12
261
Views
2
CrossRef citations to date
0
Altmetric
Research Article

White electroluminescence from SiNx thin films by a PECVD equipment using dichlorosilane precursor and study of emission mechanism

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 777-784 | Received 30 Oct 2018, Accepted 17 Mar 2019, Published online: 15 Apr 2019

References

  • Sattler KD. Handbook of nanophysics: nanoparticles and quantum dots. Sattler KD, editor. Florida, United States: CRC Press: Taylor & Francis Group; 2010.
  • Canham LT. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett. 1990;57(10):1046–1048.
  • Huang R, Song J, Wang X, et al. Origin of strong white electroluminescence from dense Si nanodots embedded in silicon nitride. Opt Lett. 2012;37(12):692.
  • Hafsi N, Bouridah H, Beghoul MR, et al. Photoluminescence from silicon nanocrystals embedded in silicon nitride fabricated by low-pressure chemical vapor deposition followed by high-temperature annealing. J Appl Phys. 2015;117(6):063105.
  • Wang YQ, Wang YG, Cao L, et al. High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride. Appl Phys Lett. 2003;83(17):3474–3476.
  • Chen LY, Chen WH, Hong FCN. Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix. Appl Phys Lett. 2005;86(19):1–3.
  • Rodriguez-Gómez A, García-Valenzuela A, Haro-Poniatowski E, et al. Effect of thickness on the photoluminescence of silicon quantum dots embedded in silicon nitride films. J Appl Phys. 2013;113(23):233102.
  • Santana G, Monroy BM, Ortiz A, et al. Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles. Appl Phys Lett. 2006;88(4):1–3.
  • Huang R, Wang X, Song J, et al. Strong orange–red light emissions from amorphous silicon nitride films grown at high pressures. Scr Mater. 2010;62(9):643–645.
  • Lee S-E, Park Y-C. Highly photoluminescent low-temperature SiNx films in situ-deposited via SLAN ECR PECVD. J Lumin. 2015;161:154–159.
  • Mon-Pérez E, Salazar J, Ramos E, et al. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiNx: role of chlorine in plasma enhanced chemical vapour deposition. Nanotechnology. 2016;27(45):1–12.
  • Gritsenko VA, Meerson EE. Thermally assisted hole tunneling at the Au-Si3N4 interface and the energy-band diagram of metal-nitride-oxide-semiconductor structures. Phys Rev B. 1998;57(4):2081–2083.
  • Park NM, Jeon SH, Yang HD, et al. Size-dependent charge storage in amorphous silicon quantum dots embedded in silicon nitride. Appl Phys Lett. 2003;83(5):1014.
  • Wang Y, Shen D, Liu Y, et al. Visible photoluminescence of Si clusters embedded in silicon nitride films by plasma-enhanced chemical vapor deposition. Phys E Low-Dimensional Syst Nanostruct. 2005;27(1–2):284–289.
  • Ma K, Feng JY, Zhang ZJ. Improved photoluminescence of silicon nanocrystals in silicon nitride prepared by ammonia sputtering. Nanotechnology. 2006;17(18):4650–4653.
  • Zacharias M, Heitmann J, Scholz R, et al. Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl Phys Lett. 2002;80(4):661–663.
  • Ali AM, Kobayashi H. Hydrogen effect on nanostructural features of nanocrystalline silicon thin films deposited at 200°C by PECVD. J Non Cryst Solids. 2014;385:17–23.
  • Sain B, Das D. Self-assembled nc-Si/a-SiNx: H quantum dots thin films: an alternative solid-state light emitting material. J Lumin. 2015;158:11–18.
  • Kim TY, Park NM, Kim KH, et al. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl Phys Lett. 2004;85(22):5355–5357.
  • Park N-M, Choi C-J, Seong T-Y, et al. Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Phys Rev Lett. 2001;86(7):1355–1357.
  • Monroy BM, Remolina Millán A, García-Sánchez MF, et al. Structure and optical properties of silicon nanocrystals embedded in amorphous silicon thin films obtained by PECVD. J Nanomater. 2011;2011(i):1–9.
  • Monroy BM, Santana G, Benami A, et al. Photoluminescence of as-grown silicon nanocrystals embedded in silicon nitride: influence of atomic hydrogen abundance. J Nanosci Nanotechnol. 2009;9(5):2902–2909.
  • Monroy BM, Santana G, Aguilar-Hernández J, et al. Photoluminescence properties of SiNx/Si amorphous multilayer structures grown by plasma-enhanced chemical vapor deposition. J Lumin. 2006;121(2):349–352.
  • Nguyen PD, Kepaptsoglou DM, Ramasse QM, et al. Direct observation of quantum confinement of Si nanocrystals in Si-rich nitrides. Phys Rev B. 2012;85(8):85315.
  • So Y-H, Gentle A, Huang S, et al. Size dependent optical properties of Si quantum dots in Si-rich nitride/Si3N4 superlattice synthesized by magnetron sputtering. J Appl Phys. 2011;109(6):064302.
  • Di D, Perez-Wurfl I, Conibeer G, et al. Formation and photoluminescence of Si quantum dots in SiO2/Si3N4 hybrid matrix for all-Si tandem solar cells. Sol Energy Mater Sol Cells. 2010;94(12):2238–2243.
  • Jia X, Di D, Xia H, et al. Size-dependent optical absorption of silicon nanocrystals embedded in SiO2/Si3N4 hybrid matrix. J Non Cryst Solids. 2013;362(1):169–174.
  • Hamui L, Monroy BM, Kim KH, et al. Effect of deposition temperature on polymorphous silicon thin films by PECVD: role of hydrogen. Mater Sci Semicond Process. 2016;41:390–397.
  • Pei Z, Chang YR, Hwang HL. White electroluminescence from hydrogenated amorphous-SiNx thin films. Appl Phys Lett. 2002;80(16):2839–2841.
  • Huang R, Chen K, Han P, et al. Strong green-yellow electroluminescence from oxidized amorphous silicon nitride light-emitting devices. Appl Phys Lett. 2007;90(9):093515.
  • Creazzo T, Redding B, Marchena E, et al. Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices, J. Lumin. 2010;130(4):631–636.
  • Joos S, Schiele Y, Terheiden B, et al. Fundamental Studies of Hydrogen at the Silicon/Silicon Nitride Interface. Energy Procedia. 2014;55:786–790.
  • Li W, Xia D, Wang H, et al. Hydrogenated nanocrystalline silicon thin film prepared by RF-PECVD at high pressure. J Non Cryst Solids. 2010;356(44–49):2552–2556.
  • Ali AM. Mechanisms of the growth of nanocrystalline Si: hfilms deposited by PECVD. J Non Cryst Solids. 2006;352(28–29):3126–3133.
  • Trwoga PF, Kenyon AJ, Pitt CW. Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters. J Appl Phys. 1998;83(7):3789–3794.
  • Lifshitz IM. The energy spectrum of disordered systems. Adv Phys. 1964;13(52):483–536.
  • Chen X, Zhao J, Wang G, et al. The effect of size distributions of Si nanoclusters on photoluminescence from ensembles of Si nanoclusters. Phys Lett A. 1996;212(5):285–289.
  • Li D, Wang F, Yang D. Evolution of electroluminescence from silicon nitride light-emitting devices via nanostructural silver. Nanoscale. 2013;5(8):3435.
  • Wang X, Huang R, Song C, et al. Interface effects on the electroluminescence spectra in amorphous-Si/silicon oxynitride multilayer structures. Sci China Physics Mech Astron. 2012;55(7):1194–1197.
  • Li D, Wang F, Yang D, et al. Electrically tunable electroluminescence from SiN(x)-based light-emitting devices. Opt Express. 2012;20(16):17359–17366.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.