Publication Cover
Materials Technology
Advanced Performance Materials
Volume 34, 2019 - Issue 11
194
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

A novel nano-magnetic heterostructure BiOCl/Co-doped SrFe12O19: synthesis and photocatalytic activity

, , , &
Pages 652-664 | Received 27 Feb 2019, Accepted 21 Apr 2019, Published online: 02 May 2019

References

  • Chen HC, Wang XN, Bi WL. Photodegradation of carbamazepine with BiOCl/Fe3O4 catalyst under simulated solar light irradiation. J Colloid Interface Sci. 2017;502:89–99.
  • Xie TP, Xu LJ, Yang J. Magnetic composite BiOCl–SrFe12O19: a novel p–n type heterojunction with enhanced photocatalytic activity. Dalton Trans. 2014;43:2211–2220.
  • Ye LQ, Zan L, Tian LH. The (001) facets-dependent high photoactivity of BiOCl nanosheets. Chem Commun. 2011;47:6951–6953.
  • Xiao X, Hao R, Liang M, et al. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A. J Hazard Mater. 2012;233:122–130.
  • Zhang K, Liang J, Wang S. BiOCl sub-microcrystals induced by citric acid and their high photocatalytic activities. Cryst Growth Des. 2012;12:793–803.
  • Wang CY, Zhang YJ, Wang WK. Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation. Appl Catal, B. 2018;221:320–328.
  • Gao YP, Wang LB, Li ZY. Microwave-assisted synthesis of flower-like Ag-BiOCl nanocomposite. Mater Lett. 2014;136:295–297.
  • Mi Y, Wen L, Wang Z, et al. Fe(III) modified BiOCl ultrathin nanosheet towards high-efficient visible-light photocatalyst. Nano Energy. 2016;30:109–117.
  • Wang CH, Shao CL, Liu YC. Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. Scripta Mater. 2008;59:332–335.
  • Zhang J, Xia JX, Yin S. Improvement of visible light photocatalytic activity over flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids. Colloids Surf, A. 2013;420:89–95.
  • Chai SY, Kim YJ, Jung MH. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J Catal. 2009;262:144–149.
  • Choi YI, Kim Y, Cho DW. Recyclable magnetic CoFe2O4/BiOX (X = Cl, Br and I) microflowersfor photocatalytic treatment of water contaminated with methyl orange, rhodamine B, methylene blue, and a mixed dye. RSC Adv. 2015;5:79624–79634.
  • Pan LN, Cao DR, Jing PP. A novel method to fabricate CoFe2O4/SrFe12O19 composite ferrite nanofibers with enhanced exchange coupling effect. Nanoscale Res Lett. 2015;10:131.
  • Xie TP, Xu LJ, Liu CL. Synthesis and properties of composite magnetic material SrCoxFe12-xO19 (x=0–0.3). Powder Technol. 2012;232:87–92.
  • Ramay SM, Atiq S, Saleem M. Enhanced magnetization of sol-gel synthesized pb-doped strontium hexaferrites nanocrystallites at low temperature. J Nanomater. 2014;2014:452468.
  • Pan LN, Gu FM, Cao DR. Electrospun Dy-doped SrFe12O19 nanofibers: microstructure and magnetic properties. Appl Phys A. 2016;122:583.
  • Huang F, Liu X, Niu X. Improvement of magnetic properties of Cr 3+ substituted SrFe12O19. Mater Technol. 2015;30:301–305.
  • Cui CX, Xu LJ, Xie TP. Structural and magnetic properties of sm-doped strontium hexaferrite (SrFe12−xSmxO19) powders. Mater Focus. 2014;3:355–360.
  • Jean M, Nachbaur V. Synthesis and characterization of SrFe12O19 powder obtained by hydrothermal process. J Alloys Compd. 2010;496:306–312.
  • Wang YF, Li QL, Zhang CR. Preparation and magnetic properties of different morphology nano-SrFe12O19 particles prepared by sol–gel method. J Alloys Compd. 2009;467:284–287.
  • Xie TP, Xu LJ, Liu CL. Magnetic composite ZnFe2O4/SrFe12O19: preparation, characterization, and photocatalytic activity under visible light. Appl Surf Sci. 2013;273:684–691.
  • Roohani E, Arabi H, Sarhaddi. R, et al. Hexaferrite nanoparticles prepared by sol-gel auto-combustion method: the role of co substitution in structural, morphological, and magnetic properties. J Super Nov Magn. 2017;30:599–608.
  • Xie TP, Xu LJ, Liu CL. Synthesis and adsorption properties of high specific surface area strontium ferrite from Industrial Strontium Residue. Vacuum. 2013;93:71–78.
  • Yang XF, Li QL, Zha JX. Preparation and magnetic properties of controllable-morphologies nano-SrFe12O19 particles prepared by sol–gel self-propagation synthesis. J Alloys Compd. 2009;475:312–315.
  • Chakraborty S, Bhattacharyya NS. Effect of Co substitution on absorption properties of SrCoxFe12-xO19 hexagonal ferrites-based nanocomposites in X-band. J Magn Magn Mater. 2017;443:244–251.
  • Hou JG, Yang C, Wang Z, et al. Bi2O3 quantum dots decorated anatase TiO2 nanocrystals with exposed (001) facets on graphene sheets for enhanced visible-light photocatalytic performance. Appl Catal, B. 2013;129:333–341.
  • Balachandran S, Swaminathan M. Facile fabrication of heterostructured Bi2O3–ZnO photocatalyst and its enhanced photocatalytic activity. J Phys ChemC. 2012;116:26306–26312.
  • Pollert E, Veverka P, Veverka M. Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues. Prog Solid State Chem. 2009;37:1–14.
  • Chen CC, Fu YP, Hu SH. Characterizations of TiO2/SiO2/Ni–Cu–Zn ferrite composite for magnetic photocatalysts. J Am Ceram Soc. 2015;98:2803–2811.
  • Li G, Qin F, Yang H, et al. Facile microwave synthesis of 3D flowerlike BiOBr nanostructures and their excellent Cr VI removal capacity. Eur J Inorg Chem. 2012;15:2508–2513.
  • Jiang R, Zhu HY, Li JB. Fabrication of novel magnetically separable BiOBr/CoFe2O4 microspheres and its application in the efficient removal of dye from aqueous phase by an environment-friendly and economical approach. Appl Surf Sci. 2016;364:604–612.
  • Wang SF, Zhang CF, Sun GG. Effect of carbon and sintering temperature on the structural and magnetic properties of SrFe12O19 nanoparticles. J Sol-Gel Sci Technol. 2015;73:371–378.
  • Shafiu S, Sözeri H, Baykal A. Solvothermal synthesis of SrFe12O19 hexaferrites: without calcinations. J Supercond Nov Magn. 2014;27:1593–1598.
  • Zhou ZP, Wang ZY, Wang XT. Preparation and magnetic properties of Nd–Co-substituted M-type strontium ferrite by microwave assisted synthesis method. J Supercond Nov Magn. 2015;28:1773–1778.
  • Hoque A, Guzman MI. Photocatalytic activity. Exp Features to Report in Heterogeneous Photocatalysis. 2018;11(10):1990.
  • Abraime B, Tamerd MA, Mahmoud A. Experimental and theoretical investigation of SrFe12O19 nanopowder for permanent magnet application. Ceram Int. 2017;43:15999–16006.
  • Xie TP, Liu CL, Xu LJ, et al. Novel heterojunction Bi2O3/SrFe12O19 magnetic photocatalyst with highly enhanced photocatalytic activity. J Phys Chem C. 2013;117:24601–24610.
  • Xie TP, Xu LJ, Liu CL, et al. A novel magnetic heterojunction photocatalyst TiO2/SrFe12O19: synthesis strategy, photocatalytic activity, and unprecedented migration mechanism of photoexcited charge carrier. Mater Technol. 2018;31:582–591.
  • Mohanta O, Singhbabu YN, Giri SK, et al. Degradation of Congo red pollutants using microwave derived SrFe12O19: an efficient magnetic photocatalyst under visible light. J Alloys Compd. 2013;564:78–83.
  • Ye FX, Ohmori A. The photocatalytic activity and photo-absorption of plasma sprayed TiO2–Fe3O4 binary oxide coatings. Surf Coat Technol. 2002;160:62–67.
  • Zhou RX, Guzman MI. Photocatalytic reduction of fumarate to succinate on ZnS mineral surfaces. J Phys Chem C. 2016;120:7349–7357.
  • Reddy KM, Satyanarayana L, Manorama SV, et al. A comparative study of the gas behavior of nanostructured nickel ferrite synthesized by hydrothermal and reverse micelle techniques. Mater Res Bull. 2004;39:1491–1498.
  • Kale A, Gubbala S, Misra RDK. Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique. J Magn Magn Mater. 2004;277:350–358.
  • Misra RDK, Srivastava RS, Kale A, et al. Synthesis of nanocrystalline nickel and zinc ferrites by micro-emulsion method. Mater Sci Technol. 2003;19:826–830.
  • Nathani H, Gubbala S, Misra RDK. Magnetic behavior of nanocrystalline nickel ferrite-The effect of surface roughness. Mater Sci Eng B. 2005;121:126–136.
  • Gubbala S, Misra RDK. Magnetic behaviour of nanocrystalline nickel ferrite: Part 2 – effect of dilution. Mater Sci Technol. 2006;22:845–851.
  • Nathani H, Misra RDK. Magnetic behavior of nickel ferrite – polyethylene nanocomposite synthesized by mechanical milling process. Mater Sci Eng B. 2004;111:95–100.
  • Gubbala S, Nathani H, Koizol K, et al. Magnetic properties of nanocrystalline Ni-Zn, Zn-Mn, Ni-Mn ferrites synthesized by reverse micelle technique. Physica B. 2004;348:317–328.
  • Misra RDK, Gubbala S, Kale A, et al. A comparison of the magnetic characteristics of nanocrystalline nickel, zinc and manganese ferrites synthesized by reverse micelle technique. Mater Sci Eng B. 2004;111:164–174.
  • Kale A, Nathani H, Srivastava RS, et al. Superpararmagnetic behavior of nanocrystalline Ni-Zn, Zn-Mn and Ni-Mn ferrites processed by a reverse micelle method. Mater Sci Technol. 2004;20:999–1005.
  • Yuan Q, Rana S, Srivastava RS, et al. Synthesis and physico-chemical response of polyethylene glycol-encapsulated nickel ferrite nanoparticles. Mater Sci Technol. 2008;24:361–368.
  • Nathani H, Misra RDK. Surface effects on the magnetic behavior of nanocrystalline ferrites and nickel ferrite polymer nanocomposites. Mater Sci Eng B. 2004;113:228–235.
  • Rana S, Gallo A, Srivastava RS, et al. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics. Acta Biomater. 2007;3:233–242.
  • Sunkara BK, Misra RDK. Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: A biomaterial system. Acta Biomater. 2008;4:273–283.
  • Rana S, Rawat J, Sorensson MM, et al. Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: A biomaterial system. Acta Biomater. 2006;2:421–432.
  • Rana S, Srivastava RS, Sorensson MM, et al. Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2–NiFe2O4 system. Mater Sci Eng B. 2005;119:144–151.
  • Rana S, Rawat J, Misra RDK. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2–NiFe2O4 biomaterial system. Acta Biomater. 2005;1:691–703.
  • Rawat J, Rana S, Srivastava R, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng C. 2007;27:540–545.
  • Rawat J, Rana S, Sorensson MM, et al. Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanoparticles. Mater Sci Technol. 2007;23:97–102.
  • Venkatasubramanian R, Srivastava RS, Misra RDK. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants. Mater Sci Technol. 2008;24:589–595.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.