Publication Cover
Materials Technology
Advanced Performance Materials
Volume 35, 2020 - Issue 2
531
Views
25
CrossRef citations to date
0
Altmetric
Research Articles

Effect of isopropanol on crystal growth and photocatalytic properties regulation of anatase TiO2 single crystals

&
Pages 102-111 | Received 29 Jul 2019, Accepted 17 Aug 2019, Published online: 28 Sep 2019

References

  • Li RG, Han HX, Zhang FX, et al. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energ Environ Sci. 2014;7:1369–1376.
  • Yang Y, Hu JX, Liang Y, et al. Anatase TiO2 hierarchical microspheres consisting of truncated nanothorns and their structurally enhanced gas sensing performance. J Alloy Compd. 2017;694:292–299.
  • Low JX, Cheng B, Yu JG. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci. 2017;392:658–686.
  • Ramos-Corella KJ, Sotelo-Lerma M, Gil-Salido AA, et al. Controlling crystalline phase of TiO2 thin films to evaluate its biocompatibility. Mater Technol. 2019;34:455–462.
  • Huang WX. Oxide nanocrystal model catalysts. Acc Chem Res. 2016;49:520–527.
  • Yu JG, Qi LF, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C. 2010;114:13118–13125.
  • Liu H, Li DR, Yang XL, et al. Fabrication and characterization of Ag3PO4/TiO2 heterostructure with improved visible-light photocatalytic activity for the degradation of methyl orange and sterilization of E.coli. Mater Technol. 2019;34:192–203.
  • Yuan B, Chong RF, Zhang B, et al. Photocatalytic aerobic oxidation of amines to imines on BiVO4 under visible light irradiation. Chem Commun. 2014;50:15593–15596.
  • Liang Y, Wang SH, Guo PF. Effects of Ag on the photocatalytic activity of multiple layer TiO2 films. Mater Technol. 2017;32:46–51.
  • Jun YW, Casula MF, Sim JH, et al. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J Am Chem Soc. 2003;125:15981–15985.
  • Lazzeri M, Vittadini A, Selloni A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B. 2001;63.
  • Zhang HM, Wang Y, Liu PR, et al. Anatase TiO2 crystal facet growth: Mechanistic role of hydrofluoric acid and photoelectrocatalytic activity. Acs Appl Mater Inter. 2011;3:2472–2478.
  • Chen SL, Li D, Liu YX, et al. Morphology-dependent defect structures and photocatalytic performance of hydrogenated anatase TiO2 nanocrystals. J Catal. 2016;341:126–135.
  • Yang HG, Sun CH, Qiao SZ, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature. 2008;453:638–U634.
  • Nagata T, Kobashi K, Yamashita Y, et al. Ge incorporated epitaxy of (110) rutile TiO2 on (100) Ge single crystal at low temperature by pulsed laser deposition. Thin Solid Films. 2015;591:105–110.
  • Taguchi T, Saito Y, Sarukawa K, et al. Formation of new crystal faces on TiO2 particles by treatment with aqueous HF solution or hot sulfuric acid. New J Chem. 2003;27:1304–1306.
  • Yang HG, Liu G, Qiao SZ, et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J Am Chem Soc. 2009;131:4078–4083.
  • Dong Y, Fei X, Zhou Y. Synthesis and photocatalytic activity of mesoporous – (001) facets TiO2 single crystals. Appl Surf Sci. 2017;403:662–669.
  • Rawat J, Rana S, Srivastava R, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mat Sci Eng C-Bio S. 2007;27:540–545.
  • Venkatasubramanian R, Srivastava RS, Misra RDK. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants. Mater Sci Tech Lond. 2008;24:589–595.
  • Kuvarega AT, Krause RWM, Mamba BB. Nitrogen/Palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation. J Phys Chem C. 2011;115:22110–22120.
  • Gong JY, Yang CZ, Pu WH, et al. Liquid phase deposition of tungsten doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate. Chem Eng J. 2011;167:190–197.
  • Liu YL, Wang LL, Jin W, et al. Synthesis and photocatalytic property of TiO2@V2O5 core-shell hollow porous microspheres towards gaseous benzene. J Alloy Compd. 2017;690:604–611.
  • Rana S, Rawat J, Misra RDK. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2-NiFe2O4 biomaterial system. Acta Biomater. 2005;1:691–703.
  • Sunkara BK, Misra RDK. Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: A biomaterial system. Acta Biomater. 2008;4:273–283.
  • Depan D, Misra RDK. On the determining role of network structure titania in silicone against bacterial colonization: Mechanism and disruption of biofilm. Mat Sci Eng C-Mater. 2014;34:221–228.
  • Jansson I, Suarez S, Garcia-Garcia FJ, et al. Zeolite-TiO2 hybrid composites for pollutant degradation in gas phase. Appl Catal B-Environ. 2015;178:100–107.
  • Kudhier MA, Sabry RS, Al-Haidarie YK, et al. Significantly enhanced antibacterial activity of Ag-doped TiO2 nanofibers synthesized by electrospinning. Mater Technol. 2018;33:220–226.
  • Zhao ZK, Yang HL. Ni-W2C/mpg-C3N4 as a promising catalyst for selective hydrogenation of nitroarenes to corresponding aryl amines in the presence of Lewis acid. J Mol Catal A Chem. 2015;398:268–274.
  • Lin XX, Rong F, Fu DG, et al. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants. Powder Technol. 2012;219:173–178.
  • Hinojosa-Reyes L, Guzmán-Mar J, Villanueva-Rodríguez M. Semiconductor materials for photocatalytic oxidation of organic pollutants in wastewater. Switzerland: Springer International Publishing; 2015. p. 187–228.
  • Wu X, Xie LP, Li XY, et al. Effect of wastewater treatment processes on the pyrolysis properties of the pyrolysis tars from sewage sludges. J Therm Sci. 2011;20:167–172.
  • Zhou Z, Dai CM, Zhou XF, et al. The Removal of antimony by novel NZVI-Zeolite: the role of iron transformation. Water Air Soil Pollut. 2015;226.
  • Fan YY, Ma WG, Han DX, et al. Convenient recycling of 3D AgX/Graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv Mater. 2015;27:3767–3773.
  • Devipriya SP, Yesodharan S, Yesodharan EP. Solar photocatalytic removal of chemical and bacterial pollutants from water using Pt/TiO2-coated ceramic tiles. Int J Photoenergy. 2012;1–8.
  • Chatterjee D, Mahata A. Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface. J Photoch Photobio A. 2002;153:199–204.
  • Dong Y, Fei X, Liu Z, et al. Synthesis and photocatalytic redox properties of anatase TiO2 single crystals. Appl Surf Sci. 2017;394:386–393.
  • David TM, Wilson P, Mahesh R, et al. Photocatalytic water splitting of TiO2 nanotubes powders prepared via rapid breakdown anodization sensitized with Pt, Pd and Ni nanoparticles. Mater Technol. 2018;33:288–300.
  • Wu GS, Wang JP, Thomas DF, et al. Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity. Langmuir. 2008;24:3503–3509.
  • Penn RL, Banfield JF. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim Cosmochim Acta. 1999;63:1549–1557.
  • Yang HG, Zeng HC. Creation of intestine-like interior space for metal-oxide nanostructures with a quasi-reverse emulsion. Angew Chem Int Edit. 2004;43:5206–5209.
  • Yang XH, Li Z, Sun CH, et al. Hydrothermal stability of {001} faceted anatase TiO2. Chem Mater. 2011;23:3486–3494.
  • Dornbush PJ, Cho C, Chang ES, et al. Preliminary studies of 3,4-dichloroaniline amides as antiparasitic agents: Structure-activity analysis of a compound library in vitro against Trichomonas vaginalis. Bioorg Med Chem Lett. 2010;20:5299–5301.
  • Feng JW, Liu RL, Chen P, et al. Degradation of aqueous 3,4-dichloroaniline by a novel dielectric barrier discharge plasma reactor. Environ Sci Pollut Res. 2015;22:4447–4459.
  • Gonzalez-Pradas E, Fernandez-Perez M, Flores-Cespedes F, et al. Effects of dissolved organic carbon on sorption of 3,4-dichloroaniline and 4-bromoaniline in a calcareous soil. Chemosphere. 2005;59:721–728.
  • Sun X, Kurokawa T, Suzuki M, et al. Removal of cationic dye methylene blue by zero-valent iron: Effects of pH and dissolved oxygen on removal mechanisms. J Environ Sci Heal A. 2015;50:1057–1071.
  • Chen SF, Zhang HY, Yu XL, et al. Photocatalytic reduction of nitrobenzene by titanium dioxide powder. Chin J Chem. 2010;28:21–26.
  • Tan T, Beydoun D, Amal R. Effects of organic hole scavengers on the photocatalytic reduction of selenium anions. J Photochem Photobiol A. 2003;159:273–280.
  • Xiong F, Yu YY, Wu ZF, et al. Methanol conversion into dimethyl ether on the anatase TiO2(001) surface. Angew Chem Int Ed. 2016;55:623–628.
  • Brezova V, Blazkova A, Surina I, et al. Solvent effect on the photocatalytic reduction of 4-nitrophenol in titanium dioxide suspensions. J Photochem Photobiol A. 1997;107:233–237.
  • Jiang GD, Wei M, Yuan SD, et al. Efficient photocatalytic reductive dechlorination of 4-chlorophenol to phenol on {001}/{101} facets co-exposed TiO2 nanocrystals. Appl Surf Sci. 2016;362:418–426.
  • Garcia-Fernandez I, Fernandez-Calderero I, Polo-Lopez MI, et al. Disinfection of urban effluents using solar TiO2 photocatalysis: A study of significance of dissolved oxygen, temperature, type of microorganism and water matrix. Catal Today. 2015;240:30–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.