Publication Cover
Materials Technology
Advanced Performance Materials
Volume 35, 2020 - Issue 6
221
Views
8
CrossRef citations to date
0
Altmetric
Research Article

MnxZn1-xFe2O4 coated with β-Bi2O3 and β-MnO2 as a highly efficient and magnetically recyclable photocatalyst for water treatment

, , , , , , , & show all
Pages 317-325 | Received 04 Sep 2019, Accepted 13 Oct 2019, Published online: 04 Nov 2019

References

  • Lu Z, Zhu Z, Wang D, et al. Specific oriented recognition of a new stable ICTX@Mfa with retrievability for selective photocatalytic degrading of ciprofloxacin. Catal Sci Technol. 2016;6:1367–1377.
  • Chen C, Ma W, Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev. 2010;39:4206–4219.
  • Hou J, Yang C, Wang Z, et al. Bi2O3 quantum dots decorated anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets for enhanced visible-light photocatalytic performance. Appl Catal B-Environ. 2013;129:333–341.
  • Santhosh C, Velmurugan V, Jacob G, et al. Role of nanomaterials in water treatment applications: A review. Chem Eng J. 2016;306:1116–1137.
  • Liang Y, Wang S, Guo P. Effects of Ag on the photocatalytic activity of multiple layer TiO2 films. Mater Technol. 2017;32:46–51.
  • David TM, Wilson P, Mahesh R, et al. Photocatalytic water splitting of TiO2 nanotubes powders prepared via rapid breakdown anodization sensitized with Pt, Pd and Ni nanoparticles. Mater Technol. 2018;33:288–300.
  • Chandrasekaran S, Yao L, Deng LB, et al. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond, Chem. Soc Rev. 2019;48:4178–4280.
  • Chandrasekaran S, Yen-Linh Thi N, Sui L, et al. Highly enhanced visible light water splitting of CdS by green to blue upconversion. Dalton Trans. 2017;46:13912–13919.
  • Chandrasekaran S, Bowen C, Zhang P, et al. Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting. J Mater Chem A. 2018;6:11078–11104.
  • Rana S, Gallo A, Srivastava RS, et al. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics. Acta Biomater. 2007;3:233–242.
  • Gubbala S, Misra RDK. Magnetic behaviour of nanocrystalline nickel ferrite: part 2 - Effect of dilution. Mater Sci Technol. 2006;22:845–851.
  • Chandrasekaran S, Chung JS, Kim EJ, et al. Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting. Chem Eng J. 2016;290:465–476.
  • Chandrasekaran S, Zhang P, Peng F, et al. Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting. J Mater Chem A. 2019;7:6161–6172.
  • Chandrasekaran S, Choi WM, Chung JS, et al. 3D crumpled RGO-Co3O4 photocatalysts for UV-induced hydrogen evolution reaction. Mater Lett. 2014;136:118–121.
  • Liu H, Li D, Yang X, et al. Fabrication and characterization of Ag3PO4/TiO2 heterostructure with improved visible-light photocatalytic activity for the degradation of methyl orange and sterilization of E.coli. Mater Technol. 2019;34:192–203.
  • Gomez-Cerezo MN, Munoz-Batista MJ, Tudela D, et al. Composite Bi2O3-TiO2 catalysts for toluene photo-degradation: ultraviolet and visible light performances. Appl Catal B-Environ. 2014;156:307–313.
  • Chandrasekaran S, Chung JS, Kim EJ, et al. Advanced nano-structured materials for photocatalytic water splitting. J Electrochem Sci Technol. 2016;7:1–12.
  • Ramos-Corella KJ, Sotelo-Lerma M, Gil-Salido AA, et al. Controlling crystalline phase of TiO2 thin films to evaluate its biocompatibility. Mater Technol. 2019;34:455–462.
  • Sunkara BK, Misra RDK. Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: A biomaterial system. Acta Biomater. 2008;4:273–283.
  • Rawat J, Rana S, Srivastava R, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Materials Sci Eng C-Biomimetic Supramolecular Syst. 2007;27:540–545.
  • Rawat J, Rana S, Sorensson MM, et al. Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanopartictes. Mater Sci Technol. 2007;23:97–102.
  • Pelaez M, Nolan NT, Pillai SC, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Appl Catal B Environ. 2012;125:331.
  • Cong Y, Zhe L, Zhang Y, et al. Synthesis of α-Fe2O3/TiO2 nanotube arrays for photoelectro-Fenton degradation of phenol[J]. Chem Eng J. 2012;191:356.
  • Dung NT, Khoa NV, Herrmann JM. Photocatalytic degradation of reactive dye RED-3BA in aqueous TiO2 suspension under UV-visible light[J]. Int J Photoenergy. 2005;7(1):11–15.
  • Xiong M, Chen L, Yuan Q, et al. Controlled synthesis of graphitic carbon nitride/beta bismuth oxide composite and its high visible-light photocatalytic activity. Carbon. 2015;86:217.
  • Zhang X, Xu G, Hu J, et al. Fabrication and photocatalytic performances of BiOCl nanosheets modified with ultrafine Bi2O3 nanocrystals. Rsc Adv. 2016;6:63241–63249.
  • Huang Y, Fan W, Long B, et al. Visible light Bi2S3/Bi2O3/Bi2O2CO3 Photocatalyst for effective degradation of organic pollutions. Appl Catal B Environ. 2015;185:68–76.
  • Wang P, Xu L, Ao Y, et al. In-situ growth of Au and β-Bi2O3 nanoparticles on flower-like Bi2O2CO3: A multi-heterojunction photocatalyst with enhanced visible light responsive photocatalytic activity. J Colloid Interface Sci. 2017;495:122–129.
  • Najim AA, Muhi MAH, Gbashi KR, et al. Synthesis of efficient and effective γ-MnO2/α-Bi2O3/a-Si solar cell by vacuum thermal evaporation technique. Plasmonics. 2018;13:891–895.
  • Preisler E. Semiconductor properties of manganese-dioxide. J Appl Electrochem. 1976;6:311–320.
  • Ye H, Kang J, Ma G, et al. High-speed graphene@Ag-MnO2 micromotors at low peroxide levels. J Colloid Interf Sci. 2018;528:271–280.
  • Kumar N, Sen A, Rajendran K, et al. Morphology and phase tuning of α- and β-MnO2 nanocacti evolved at varying modes of acid count for their well-coordinated energy storage and visible-light-driven photocatalytic behavior. RSC Adv. 2017;7(40):25041–25053.
  • Trzcinski K, Szkoda M, Sawczak M, et al. Visible Visible light activity of pulsed layer deposited BiVO4/MnO2 films decorated with gold nanoparticles: the evidence for hydroxyl radicals formation. Appl Surf Sci. 2016;385:199–208.
  • Zhang J, Misra RDK. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomater. 2007;3:838–850.
  • Zhang JL, Srivastava RS, Misra RDK. Core−shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir. 2007;23:6342–6351.
  • Rana S, Rawat J, Sorensson MM, et al. Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: A biomaterial system. Acta Biomater. 2006;2:421–432.
  • Rana S, Rawat J, Misra RDK. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: tiO2-NiFe2O4 biomaterial system. Acta Biomater. 2005;1:691–703.
  • Rana S, Srivastava RS, Sorensson MM, et al. Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2-NiFe2O4 system. Mat Sci Eng B Solid. 2005;119:144–151.
  • Venkatasubramanian R, Srivastava RS, Misra RDK. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants. Mater Sci Technol. 2008;24:589–595.
  • Chandrasekaran S, Hur SH, Kim EJ, et al. Highly-ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting. Rsc Adv. 2015;5:29159–29166.
  • Wang HL, Xu LJ, Liu CL, et al. Composite magnetic photocatalyst Bi5O7I/MnxZn1-xFe2O4: hydrothermal-roasting preparation and excellent photocatalytic activity. Nanomaterials. 2019;9:14.
  • Xie T, Liu C, Xu L, et al. New insights into Mn1-xZnxFe2O4 via fabricating magnetic photocatalyst material BiVO4/Mn1-xZnxFe2O4. Materials. 2018;11(3):335.
  • Liu R, Wu CF, Der Ger. M. Degradation of FBL dye wastewater by magnetic photocatalysts from scraps. J Nanomater. 2015;2015:1.
  • Wang S, Zhou S. Titania deposited on soft magnetic activated carbon as a magnetically separable photocatalyst with enhanced activity. Appl Surf Sci. 2010;256:6191–6198.
  • Xie T, Liu C, Xu L, et al. New insights into Mn1-xZnxFe2O4 via fabricating magnetic photocatalyst material BiVO4/Mn1-xZnxFe2O4. Materials. 2018;11:3.
  • Weifang W, Longjun X, Chenglun L. Preparetion and characterization of composite magnetic catalyst β-MnO2/Mn1-xZnxFe2O4[J]. Acta Materiae Compositae Sinica. 2018;35(2):426–432. in Chinese
  • Zhang ZD, Xu LJ, Liu CL. Preparation and characterization of composite magnetic photocatalyst MnxZn1-xFe2O4/β-Bi2O3. RSC Adv. 2015;5:79997–80004.
  • Xie T, Liu C, Xu L, et al. Novel heterojunction Bi2O3/SrFe12O19 magnetic photocatalyst with highly enhanced photocatalytic activity. J Phys Chem C. 2013;117:24601–24610.
  • Yuejun L, Cao T, Zhang J. Synthesis characterization and photocatalysis of the Bi2O3 nanofibers. J Hebei Normal Univ (Natural Science Edition). 2011;35(6):598. ( in Chinese).
  • Yang R, Wang Z, Dai L, et al. Synthesis and characterization of single-crystalline nanorods of α-MnO2 and γ-MnOOH. Mater Chem Phys. 2005;93:149–153.
  • Yang Y, Zhong H, Tian C. Photocatalytic mechanisms of modified titania under visible light. Res Chem Intermediat. 2011;37:91–102.
  • Gaya UI. Mechanistic principles of photocatalytic reaction[M]//Umar Ibrahim Gaya. Heterogeneous photocatalysis using inorganic semiconductor solids. Dordrecht: Springer Science Business Media; 2014. p. 73–89.
  • He Y, Jiang DB, Chen J, et al. Synthesis of MnO2 nanosheets on montmorillonite for oxidative degradation and adsorption of methylene blue. J Colloid Interf Sci. 2018;510:207–220.
  • Zhai Y, Yin Y, Liu X, et al. Novel magnetically separable BiVO4/Fe3O4 photocatalyst: synthesis and photocatalytic performance under visible-light irradiation. Mater Res Bull. 2017;89:297–306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.