Publication Cover
Materials Technology
Advanced Performance Materials
Volume 35, 2020 - Issue 6
93
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Microstructure and electromagnetic properties of Nd3+substitued Mg-Mn nanocrystalline ferrites via hydrothermal procedure

, , &
Pages 372-382 | Received 05 Sep 2019, Accepted 22 Oct 2019, Published online: 08 Nov 2019

References

  • Kumar G, Kotnala RK, Shah J, et al. Cation distribution: a key to ascertain the magnetic interactions in a cobalt substituted Mg-Mn nanoferrite matrix[J]. Phys Chem Chem Phys. 2017;19(25):16669–16680.
  • Kuo MF, Hung YH, Huang JY, et al. Substitution effects on magnetic properties of Mg1.3-xMnxAlyFe1.8-yO4 ferrites[J]. API Adv. 2017;7(5):2158–3226.
  • Tsay CY, Liang SC, Lei CM, et al. A comparative study of the magnetic and microwave properties of Al3+ and In3+ substituted Mg–Mn ferrites[J]. Ceram Int. 2016;42(4):4748–4753.
  • Kumar G, Sharma S, Kotnala RK, et al. Electric, dielectric and ac electrical conductivity study of nanocrystalline cobalt substituted Mg–Mn ferrites synthesized via solution combustion technique[J]. Mol Struct. 2013;1051(5):336–344.
  • Wang GS, Ma YY, Tong Y, et al. Development of manganese ferrite/graphene oxide nanocomposites for magnetorheological fluid with enhanced sedimentation stability[J]. J Ind Chem. 2017;48:142–150.
  • Kumar G, Shah J, Kotnala RK, et al. Superparamagnetic behaviour and evidence of weakening in super-exchange interactions with the substitution of Gd3+ ions in the Mg–Mn nanoferrite matrix[J]. Mater Res Bull. 2015;63:216–225.
  • Sahar ZA, Maryam SM, Masoud SN. Nd2Sn2O7 nanostructures as highly efficient visible light photocatalyst: green synthesis using pomegranate juice and characterization[J]. J Clean Prod. 2018;198:11–18.
  • Lwin N, Othman R, Sreekantan S, et al. Study on the structural and electromagnetic properties of Tm-substituted Mg-Mn ferrites by a solution combustion method[J]. J Magn Magn Mater. 2015;385:433–440.
  • Yang Z, Zhang Y, Song Y, et al. Magnetic properties for the single-domain CoFe2O4 nanoparticles synthesized by the hydrothermal method[J]. J Wuhan Univ Technol. 2015;30(6):1140–1146.
  • Farzad N, Farshad B, Masoud SN. Effect of surfactants and precipitation agents on the morphologies of Nd6MoO12 nanostructures for enhancing photocatalytic activity[J]. Adv Powder Technol. 2018;29:737–743.
  • Fatermeh A, Azam S, Masoud SN. Sol-gel auto-combustion synthesis of PbFe12O19 using maltose as a novel reductant[J]. RSC Adv. 2014;4:63946.
  • Maryam SM, Sahar ZA, Masoud SN. Nd2Sn2O7 nanostructures: new facile pechini preparation, characterization, and investigation of their photocatalytic degradation of methyl orange dye[J]. Adv Powder Technol. 2017;28:697–705.
  • Sunkara BK, Misra RDK. Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: a biomaterial system[J]. Acta Biomater. 2008;4:273–283.
  • Venkatasubramanian R, Srivastava RS, Misra RDK. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants[J]. Mater Sci Tech Lond. 2008;24(5):589–595.
  • Rawat J, Rana S, Srivastava RS, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core[J]. Mat Sci Eng C-Struct. 2007;27:540–545.
  • Rawat J, Rana S, Sorensson MM, et al. Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanoparticles[J]. Mater Sci Tech Lond. 2007;23(1):97–102.
  • Rana S, Gallo A, Srivastava RS, et al. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics[J]. Acta Biomater. 2007;3:233–242.
  • Rana S, Rawat J, Sorensson MM, et al. Antimicrobial function of Nd3+ -doped anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system[J]. Acta Biomater. 2006;2:421–432.
  • Gubbala S, Misra RDK. Magnetic behaviour of nanocrystalline nickel ferrite: part 2 – effect of dilution[J]. Mater Sci Tech Lond. 2006;22(7):845–851.
  • Rana S, Rawat J, Misra RDK. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2 –NiFe2O4 biomaterial system[J]. Acta Biomater. 2005;1:691–703.
  • Rana S, Srivastava RS, Sorensson MM, et al. Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2 –NiFe2O4 system[J]. Mater Sci Eng B-Adv. 2005;119:144–151.
  • Masoud SN, Fatermeh D, Mehdi M. Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [bis(salicylidene)zinc(II)][J]. J Alloy Compd. 2009;470:502–506. Adv Powder Technol. 2018; (29):737–743.
  • Torkian S, Ghasemi A, Razavi RS, et al. Magnetic properties of hard-soft SrFe10Al2O19/Co0.8Ni0.2Fe2O4 ferrite synthesized by one-pot sol–gel auto-combustion[J]. J Magn Magn Mater. 2016;416:408–416.
  • Shen P, Luo J, Zuo Y, et al. Effect of La-Ni substitution on structural, magnetic and microwave absorption properties of barium ferrite[J]. Ceram Int. 2017;43(6):4846–4851.
  • Morassaei MS, Salehabadi A, Akbari A, et al. Enhanced dye sensitized solar cells efficiency by utilization of an external layer of CaCe2(MoO4)4: Er3+/Yb3+ nanoparticles[J]. J Alloy Compd. 2018;769:732–739.
  • Kumar G, Rani R, Sharma S, et al. Electric and dielectric study of cobalt substituted Mg-Mn nanoferrites synthesized by solution combustion technique[J]. Ceram Int. 2013;39(5):4813–4818.
  • Sahar ZA, Maryam SM, Masoud SN. Facile fabrication of Dy2Sn2O7-SnO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminants[J]. J Colloid Interf Sci. 2017;497:298–308.
  • Hemeda OM, Mostafa NY, Elkader OHA, et al. Solubility limits in Mn-Mg ferrites system under hydrothermal condition[J]. J Magn Magn Mater. 2014;364(9):39–46.
  • Ghodake UR, Kambale RC, Suryavanshi SS. Effect of Mn2+ substitution on structural, electrical transport and dielectric properties of Mg-Zn ferrites[J]. Ceram Int. 2017;43(1):1129–1134.
  • Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr. 1976;32(5):751–767.
  • Sun GB, Dong BX, Cao MH, et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption[J]. Chem Mater. 2011;23(6):1587–1593.
  • Sobhan MD, Masoud SN, Omid A, et al. Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution[J]. J Energy Chem. 2017;26:17–23.
  • Maryam SM, Sahar ZA, Masoud AN. New facile synthesis, structural and photocatalytic studies of NdOCl-Nd2Sn2O7-SnO2 nanocomposites[J]. J Mol Liq. 2016;220:902–909.
  • Fatemeh A, Azam S, Masoud SN. Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents[J]. J Colloid Interf Sci. 2018;514:723–732.
  • Rabia Q, Norah HA. Structural, dielectric and magnetic properties of cobalt based spinel ferrites[J]. Curr Appl Phys. 2018;18:519–525.
  • Ikram S, Arshad MI, Mahmood K, et al. Structural, magnetic and dielectric study of La3+ substituted Cu0.8Cd0.2Fe2O4 ferrite nanoparticles synthesized by the co-precipitation method[J]. J Alloy Compd. 2018;769:1019–1025.
  • Fatermeh A, Mehdi B, Masoud SN. NiTiO3/NiFe2O4 nanocomposites: simple sol-gel auto-combustion synthesis and characterization by utilizing onion extract as a novel fuel and green capping agent[J]. Mat Sci Semicon Proc. 2016;43:34–40.
  • Guo H, Zhan YQ, Chen ZR, et al. Decoration of basalt fibers with hybrid Fe3O4 microspheres and their microwave absorption application in bisphthalonitrile composites[J]. J Mater Chem A. 2013;1(6):2286–2296.
  • Kumar G, Chand J, Verma S, et al. Mixed Mg-Mn ferrites for high frequency applications processed by citrate precursor technique[J]. J Phys D: Appl Phys. 2009;42(15):155001.
  • Tian LH, Yan X, Ji L, et al. Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles[J]. J Mater Chem A. 2015;3(23):12550–12556.
  • Shu RW, Zhang GY, Wang X, et al. Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high performance electromagnetic wave absorbers[J]. Chem Eng J. 2018;337:242–255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.