312
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

A facile synthesis approach of Li2MnO3 cathode material for lithium-ion battery by one-step high-energy mechanical activation method

, , , , , , , & show all
Pages 600-605 | Received 11 Dec 2019, Accepted 17 Jan 2020, Published online: 16 Feb 2020

References

  • Goodenough JB, Kim Y. Challenges for Rechargeable Li Batteries.Chem. Mater. 2010; 22(3):587–603.
  • Armand M, Tarascon J-M. Building better batteries. Nature. 2008;451(7179):652–657.
  • Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011;4(9):3243.
  • Yu H, Zhou H. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J Phys Chem Lett. 2013;4(8):1268–1280.
  • Thackeray MM, Kang S-H, Johnson CS, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem. 2007;17(30):3112.
  • Zhao W, Xiong L, Xu Y, et al. Magnesium substitution to improve the electrochemical performance of layered Li2MnO3 positive-electrode material. J Power Sources. 2016;330:37–44.
  • Tamilarasan S, Mukherjee D, Sampath S, et al. Synthesis, structure and electrochemical behaviour of new Ru-containing lithium-rich layered oxides. Solid State Ion. 2016;297:49–58.
  • Mori D, Kobayashi H, Okumura T, et al. XRD and XAFS study on structure and cation valence state of layered ruthenium oxide electrodes Li2RuO3 and Li2Mn0.4Ru0.6O3 upon electrochemical cycling. Solid State Ion. 2016;285:66–74.
  • Liu G-B, Liu H, Wang Y, et al. The electrochemical properties of Fe- and Ni-cosubstituted Li2MnO3 via combustion method. J Solid State Electrochem. 2013;17(9):2437–2444.
  • Tabuchi M, Kitta M, Kageyama H, et al. Mn source effects on electrochemical properties of Fe -and Ni-substituted Li2MnO3 positive electrode material. J Power Sources. 2015;279:510–516.
  • Liu H, Qian D, Verde MG, et al. Understanding the role of NH4F and Al2O3 surface co-modification on lithium-excess layered oxide Li1.2Ni0.2Mn0.6O2. ACS Appl Mater Inter. 2015;7(34):19189–19200.
  • Song B, Lai MO, Liu Z, et al. Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. ?J Mater Chem A. 2013;1(34):9954–9965.
  • Yang T, Zhang N, Ye L, et al. Enhanced rate performance of carbon-coated LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. Electrochim Acta. 2011;56(11):4058–4064.
  • Lilong X, Mengting S, Youlong X, et al. Synthesis of carbon coated Li2MnO3 cathode material with enhanced rate capability for lithium-ion batteries. Solid State Ion.2018;325(1):170–175.
  • Amalraj SF, Sharon D, Talianker M, et al. Study of the nanosized Li2MnO3: electrochemical behavior, structure, magnetic properties, and vibrational modes. Electrochim Acta. 2013;97:259–270.
  • Sayle TX, Caddeo F, Monama NO, et al. Origin of electrochemical activity in nano-Li2MnO3 stabilization via a ‘point defect scaffold’. Nanoscale. 2015;7(3):1167–1180.
  • Song JH, Shim JH, Kapylou A, et al. Suppression of voltage depression in Li-rich layered oxide by introducing GaO 4 structural units in the Li2MnO3-like nano-domain. Nano Energy. 2016;30:717–727.
  • Lim J, Moon J, Gim J, et al. Fully activated Li2MnO3 nanoparticles by oxidation reaction. J Mater Chem. 2012;22(23):11772.
  • Wu X, Li H, Fei H, et al. Facile synthesis of Li2MnO3nanowires for lithium-ion battery cathodes. New J Chem. 2014;38(2):584–587.
  • Ngala JK, Alia S, Dobley A, et al. Characterization and electrocatalytic behavior of layered Li2MnO3 and its acid-treated form. Chem Mater. 2007;19(2):229–234.
  • Jain G, Yang J, Balasubramanian M, et al. Synthesis, electrochemistry, and structural studies of lithium intercalation of a nanocrystalline Li2MnO3-like compound. Cheminform. 2010;36(43):3850–3860.
  • Lanz P, Villevieille C, Novák P. Electrochemical activation of Li2MnO3 at elevated temperature investigated by in situ Raman microscopy. Electrochim Acta. 2013;109:426–432.
  • Wei GZ, Lu X, Ke FS, et al. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater. 2010;22(39):4364–4367.
  • Fecht HJ, Hellstern E, Fu Z, et al. Nanocrystalline metals prepared by high-energy ball milling. Metall Trans A. 1990;21(9):2333.
  • Kim S, Noh JK, Aykol M, et al. Layered-layered-spinel cathode materials prepared by a high-energy ball-milling process for lithium-ion batteries. ACS Appl Mater Inter. 2016;8(1):363.
  • Shin Y, Persson KA. Surface morphology and surface stability against oxygen loss of the lithium-excess Li2MnO3 cathode material as a function of lithium concentration. ACS Appl Mater Interfaces. 2016;8(38):25595–25602.
  • Chen H, Islam MS. Lithium extraction mechanism in Li-Rich Li2MnO3 involving oxygen hole formation and dimerization. Chem Mater. 2016;28(18):6656–6663.
  • Hu GR, Xue ZC, Luo ZY. Improved cycling performance of CeO2-inlaid Li-rich cathode materials for lithium-ion battery. Ceram Int. 2019;45:10633–10639.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.