Publication Cover
Materials Technology
Advanced Performance Materials
Volume 36, 2021 - Issue 2
411
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Preparation of ZnO-carbon quantum dot composite thin films with superhydrophilic surface

ORCID Icon, &
Pages 72-80 | Received 15 Sep 2019, Accepted 05 Nov 2019, Published online: 18 Feb 2020

References

  • Samadi M, Zirak M, Naseri A, et al. Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films. 2016;605:2–19.
  • Samadi M, Zirak M, Naseri A, et al. Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review. Res Chem Intermed. 2019;45(4):2197–2254.
  • Xu Z, Zhang Y, Wang Z. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector. J Phys D: Appl Phys. 2019;52(22):223001.
  • Raj V, Dos Santos TS, Rougieux F, et al. Indium phosphide based solar cell using ultra-thin ZnO as an electron selective layer. J Phys D: Appl Phys. 2018;51(39):395301.
  • Ridha NJ, Alosfur FKM, Jumali MHH, et al. Dimensional effect of ZnO nanorods on gas-sensing performance. J Phys D: Appl Phys. 2018;51(43):435101.
  • Zirak M, Akhavan O, Moradlou O, et al. Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria. J Alloys Compd. 2014;590:507–513.
  • Zirak M, Moradlou O, Bayati MR, et al. On the growth and photocatalytic activity of the vertically aligned ZnO nanorods grafted by CdS shells. Appl Surf Sci. 2013;273:391–398.
  • Zirak M, Oveisi H, Lin J, et al. Synthesis of CdS/ZnO Hybrid Nanoarchitectured Films with Visible Photocatalytic Activity. Bull Chem Soc Jpn. 2018;91(10):1556–1560.
  • Jia Z, Misra RDK. Tunable ZnO quantum dots for bioimaging: synthesis and photoluminescence. Mater Technol. 2013;28(4):221–227.
  • Chandrasekaran S, Misra RDK. Photonic antioxidant ZnS(Cd) nanorod synthesis for drug carrier and bioimaging. Mater Technol. 2013;28(4):228–233.
  • Wang Y, Xu M, Li J, et al. Sol-combustion synthesis of Al-doped ZnO transparent conductive film at low temperature. Surf Coat Technol. 2017;330:255–259.
  • Murugesan M, Arjunraj D, Mayandi J, et al. Properties of Al-doped zinc oxide and In-doped zinc oxide bilayer transparent conducting oxides for solar cell applications. Mater Lett. 2018;222:50–53.
  • Zhu M, Deng XC, Lin X, et al. The carbon quantum dots modified ZnO/TiO2 nanotube heterojunction and its visible light photocatalysis enhancement. J Mater Sci-Mater Electron. 2018;29(13):11449–11456.
  • Pan JQ, Zhao C, Wei XF, et al. p–n junction induced electron injection type transparent photosensitive film of Cu2O/carbon quantum dots/ZnO. Nanotechnology. 2018;29(8).
  • Tripathy N, Ahmad R, Kuk H, et al. Mesoporous ZnO nanoclusters as an ultra-active photocatalyst. Ceram Int. 2016;42(8):9519–9526.
  • Xing J, Liu Z, Zhou J, et al. Mesostructure Carbon-Templated synthesis of mesoporous ZnO by a nanocasting route for NO2 sensing. Mater Lett. 2019;244:182–185.
  • Depan D, Misra RDK. Structural and physicochemical aspects of silica encapsulated ZnO quantum dots with high quantum yield and their natural uptake in HeLa cells. J Biomed Mater Res A. 2014;102(9):2934–2941.
  • Yuan Q, Hein S, Misra RDK. New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater. 2010;6(7):2732–2739.
  • Chen YM, Zhou Y, Zhao Q, et al. Cs4PbBr6/CsPbBr3 perovskite composites with near-unity lminescence quantum yield: large-scale synthesis, luminescence and formation mechanism, and white light-emitting diode application. ACS Appl Mater Interfaces. 2018;10(18):15905–15912.
  • Zhang RQ, Zhao M, Wang ZQ, et al. Solution-Processable ZnO/Carbon Quantum Dots Electron Extraction Layer for Highly Efficient Polymer Solar Cells. ACS Appl Mater Interfaces. 2018;10(5):4895–4903.
  • Fu LX, Guo Y, Yang XC, et al. Carbon dots modifier for highly active photocatalysts based on ZnO porous microspheres. J Mater Sci-Mater Electron. 2018;29(23):19994–20002.
  • Li Y, Zhang BP, Zhao JX, et al. ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Appl Surf Sci. 2013;279:367–373.
  • Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44(1):362–381.
  • Wang Y, Hu A. Carbon quantum dots: synthesis, properties and applications. J Mater Chem C. 2014;2(34):6921–6939.
  • Baker SN, Baker GA. Luminescent Carbon Nanodots: emergent Nanolights. Angew Chem Int Ed. 2010;49(38):6726–6744.
  • Pan JQ, Zhang XF, Zhao C, et al. The flexible-transparent photosensitive films of cotton cellulose framework of carbon quantum dots/ZnO. Mater Lett. 2018;211:289–292.
  • Liu CH, Qiu YY, Wang F, et al. Electrodeposition of ZnO nanoflake-based photoanode sensitized by carbon quantum dots for photoelectrochemical water oxidation. Ceram Int. 2017;43(6):5329–5333.
  • Vuong NM, Reynolds JL, Conte E, et al. H:ZnO Nanorod-Based Photoanode Sensitized by CdS and Carbon Quantum Dots for Photoelectrochemical Water Splitting. J Phys Chem C. 2015;119(43):24323–24331.
  • Pan JQ, Sheng YZ, Zhang JX, et al. Photovoltaic conversion enhancement of a carbon quantum dots/p-type CuAlO2/n-type ZnO photoelectric device. ACS Appl Mater Interfaces. 2015;7(15):7878–7883.
  • Liu KK, Li XM, Cheng SB, et al. Carbon-ZnO alternating quantum dot chains: electrostatic adsorption assembly and white light-emitting device application. Nanoscale. 2018;10(15):7155–7162.
  • Ding DL, Lan W, Yang ZW, et al. A simple method for preparing ZnO foam/carbon quantum dots nanocomposite and their photocatalytic applications. Mater Sci Semicond Proces. 2016;47:25–31.
  • Kuang WC, Zhong Q, Ye XL, et al. Antibacterial nanorods made of carbon quantum dots-ZnO under visible light irradiation. J Nanosci Nanotech. 2019;19(7):3982–3990.
  • Suzuki K, Malfatti L, Carboni D, et al. Energy Transfer Induced by Carbon Quantum Dots in Porous Zinc Oxide Nanocomposite Films. J Phys Chem C. 2015;119(5):2837–2843.
  • Yu H, Zhang HC, Huang H, et al. ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New J Chem. 2012;36(4):1031–1035.
  • Ma QL, Zhang ZC, Yu ZW. Synthesis of carbon quantum dots and zinc oxide nanosheets by pyrolysis of novel metal–organic framework compounds. J Alloys Compd. 2015;642:148–152.
  • Xiao JR, Hou XL, Zhao L, et al. A carbon-quantum-dot-sensitized ZnO:Ga/ZnO multijunction composite photoanode for photoelectrochemical water splitting under visible light irradiation. J Catal. 2017;346:70–77.
  • Muthulingam S, Bae KB, Khan R, et al. Carbon quantum dots decorated N-doped ZnO: synthesis and enhanced photocatalytic activity on UV, visible and daylight sources with suppressed photocorrosion. J Environ Chem Eng. 2016;4(1):1148–1155.
  • Zhang M, Liu H, Chen L, et al. A disposable electrochemiluminescence device for ultrasensitive monitoring of K562 leukemia cells based on aptamers and ZnO@carbon quantum dots. Biosens Bioelectron. 2013;49:79–85.
  • Chava RK, Im Y, Kang M. Nitrogen doped carbon quantum dots as a green luminescent sensitizer to functionalize ZnO nanoparticles for enhanced photovoltaic conversion devices. Mater Res Bull. 2017;94:399–407.
  • Muthulingam S, Bin Bae K, Khan R, et al. Improved daylight-induced photocatalytic performance and suppressed photocorrosion of N-doped ZnO decorated with carbon quantum dots. RSC Adv. 2015;5(57):46247–46251.
  • Muthulingam S, Lee IH, Uthirakumar P. Highly efficient degradation of dyes by carbon quantum dots/N-doped zinc oxide (CQD/N-ZnO) photocatalyst and its compatibility on three different commercial dyes under daylight. J Colloid Interface Sci. 2015;455:101–109.
  • Wang XL, Xu JP, Shi SB, et al. Using carbon quantum dots to improve the resistive switching behavior of ZnO nanorods device. Phys Lett A. 2016;380(1–2):262–266.
  • Zhao X, Cheng J. Atmospheric preparation of ZnO thin films by mist chemical vapor deposition for spray-coated organic solar cells. J Mater Sci Mater Electron. 2016;27(3):2676–2681.
  • Jongthammanurak S, Witana M, Cheawkul T, et al. The effects of carrier gas and substrate temperature on ZnO films prepared by ultrasonic spray pyrolysis. Mater Sci Semicond Process. 2013;16(3):625–632.
  • Ma HL, Liu ZW, Zeng DC, et al. Nanostructured ZnO films with various morphologies prepared by ultrasonic spray pyrolysis and its growing process. Appl Surf Sci. 2013;283:1006–1011.
  • Alehdaghi H, Zirak M. Facile preparation of various ZnO nanostructures via ultrasonic mist vapor deposition: a systematic investigation about the effects of growth parameters. J Mater Sci Mater Electron. 2019;30(3):2706–2715.
  • Mata V, Maldonado A, de la Luz Olvera M. Deposition of ZnO thin films by ultrasonic spray pyrolysis technique. Effect of the milling speed and time and its application in photocatalysis. Mater Sci Semicond Process. 2018;75:288–295.
  • Untila G, Kost T, Chebotareva A. Fluorine-doped ZnO (FZO) films produced by corona-discharge-assisted ultrasonic spray pyrolysis and hydrogenation as electron-selective contacts in FZO/SiO /p-Si heterojunction crystalline silicon solar cells with 11.7% efficiency. Solar Energy. 2019;179:352–362.
  • Bhunia SK, Saha A, Maity AR, et al. Carbon Nanoparticle-based Fluorescent Bioimaging Probes. Sci Rep. 2013;3:1473.
  • Sahu S, Behera B, Maiti TK, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun. 2012;48(70):8835–8837.
  • Yan F, Zou Y, Wang M, et al. Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sens Actuators B Chem. 2014;192:488–495.
  • Qu S, Chen H, Zheng X, et al. Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities. Nanoscale. 2013;5(12):5514–5518.
  • Chowdhuri AR, Tripathy S, Haldar C, et al. Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery. J Mater Chem B. 2015;3(47):9122–9131.
  • Zheng XT, Ananthanarayanan A, Luo KQ, et al. Glowing Graphene Quantum Dots and Carbon Dots: properties, Syntheses, and Biological Applications. Small. 2015;11(14):1620–1636.
  • Viguié JC, Spitz J. Chemical Vapor Deposition at Low Temperatures. J Electrochem Soc. 1975;122(4):3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.