Publication Cover
Materials Technology
Advanced Performance Materials
Volume 36, 2021 - Issue 2
162
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Spectrophotometric study of the interaction of active pharmaceutical ingredients with colloidal silver nanoparticles capped by sulfonato-calix[6]arene derivatives

, , , &
Pages 81-90 | Received 22 Sep 2019, Accepted 07 Feb 2020, Published online: 13 Feb 2020

References

  • Palash J, Tarushyam M, Raman K, et al. Fluorescence enhancement of cationicstyrylcoumarin-cucurbit[7]uril complexes: Enhanced stability and cellular membranelocalization. J. Photochem. Photobiol. A. 2019. 384, 112062 DOI: 10.1016/j.jphotochem.2019.112062.
  • Fahmy SA, Brüßler J, Alawak M, et al. Chemotherapy based on supramolecular chemistry: a promising strategy in cancer therapy. Pharmaceutics. 2019. DOI:10.3390/pharmaceutics11060292.
  • Yang W, De Villiers MM. The solubilization of the poorly water soluble drug nifedipine by water soluble 4-sulphonic calix[n]arenes. Eur J Pharm Biopharm. 2004;58(3):629–636.
  • Yang W, De Villiers MM. Effect of 4-sulphonato-calix[n]arenes and cyclodextrins on the solubilization of niclosamide, a poorly water soluble anthelmintic. Aaps J. 2005;7(1):E241–E248.
  • Yang W, De Villiers MM. Aqueous solubilization of furosemide by supramolecular complexation with 4-sulphonic calix[n]arenes. J Pharm Phamacol. 2004;56(6):703–708.
  • Dupont N, Lazar AN, Perret F, et al. Solid state structures of the complexes between the antiseptic chlorhexidine and three anionic derivatives of calix[4]arene. CrystEngComm. 2008;10(8):975–977.
  • Lesniewska B, Coleman AW, Perret F, et al. Tuning solid-state calix[n]arene supramolecular assemblies using phenanthroline as the guest molecule. Cryst Growth Des. 2019;19(3):1695–1708.
  • Danylyuk O, Monachino M, Lazar AN, et al. Conformational isomerism in the solid-state structures of tetracaine and tamoxifen with para-sulphonato-calix[4]arene. J Mol Struct. 2010;965(1–3):116–120.
  • Montasser I, Shahgaldian P, Perret F, et al. Solid lipid nanoparticle-based calix[n]arenes and calix-resorcinarenes as building blocks: synthesis, formulation and characterization. Int J Mol Sci. 2013;14(11):21899–21942.
  • Perret F, Lazar AN, Coleman AW. Biochemistry of the para-sulfonato-calix[n]arenes. Chem Commun. 2006;23:2425–2438.
  • Perret F, Coleman AW. Biochemistry of anionic calix[n]arenes. Chem Commun. 2011;47(26):7303–7319.
  • Tauran Y, Coleman AW, Perret F, et al. Cellular and in vivo biological activities of the calix[n]arenes. Curr Org Chem. 2015;19(999):2250–2270.
  • Wang J, Ding X, Guo X. Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition. Adv Colloid Interface Sci. 2019;269:187–202.
  • Danylyuk O, Suwinska K. Solid-state interactions of calixarenes with biorelevant molecules. Chem Commun. 2009;39:5799–5813.
  • Shan N, Perry ML, Weyna DR, et al. Impact of pharmaceutical cocrystals: the effects on drug pharmacokinetics. Expert Opin Drug Metab Toxicol. 2014;10(9):1255–1271.
  • Baptista P, Pereira E, Eaton P, et al. Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem. 2008;391(3):943–950.
  • Azharuddin M, Zhu GH, Das D, et al. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun. 2019;55(49):6964–6996.
  • Sarria GR, Francésc MÁB, Galianac IL. Enhancing radiotherapy effect in breast cancer with nanoparticles: A review. Rep Pract Oncol Radiother. 2019;24(1):65–67.
  • Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2013;2(4):330–342.
  • Kumara CS, Rajac MD, Sundar DS, et al. Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells). Carbohydr Polym. 2015;128:63–74.
  • Liu C, Zheng J, Deng L, et al. Targeted intracellular controlled drug delivery and tumor therapy through in situ forming Ag nanogates on mesoporous silica nanocontainers. ACS Appl Mater Interfaces. 2015;7(22):11930–11938.
  • Sironmani TA. Comparison of nanocarriers for gene delivery and nanosensing using montmorillonite, silver nanoparticles and multiwalled carbon nanotubes. Appl Clay Sci. 2015;103:55–61.
  • Klebowski B, Depciuch J, Parlinska-Wojtan M, et al. Applications of noble metal-based nanoparticles in medicine. Int J Mol Sci. 2018. DOI:10.3390/ijms19124031.
  • Khristunova Y, Korotkova E, Kratochvil B, et al. Preparation and Investigation of silver nanoparticle-antibody bioconjugates for electrochemical immunoassay of tick-borne encephalitis. Sensors. 2019. DOI:10.3390/s19092103.
  • Papst S, Brimble MA, Tilley RD, et al. One-pot synthesis of functionalized noble metal nanoparticles using a rationally designed phosphopeptide. Part Syst Charact. 2014;31(9):971–975.
  • Zhan P, Wang ZG, Li N. Engineering gold nanoparticles with dna ligands for selective catalytic oxidation of chiral substrates. ACS Catal. 2015;5(3):1489–1498.
  • Couto C, Vitorino R, Daniel-da-Silva AL. Gold nanoparticles and bioconjugation: a pathway for proteomic applications. Crit Rev Biotechnol. 2016;37(2):238–250.
  • Girase B, Depan D, Shah JS, et al. Silver–clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater Sci Eng C. 2011;31(8):1759–1766.
  • Misra RDK, Girase B, Depan D, et al. Hybrid nanoscale architecture for enhancement of antimicrobial activity: immobilization of silver nanoparticles on thiol-functionalized polymer crystallized on carbon nanotubes. Adv Eng Mater. 2012;14(4):B93–B100.
  • Loiseau A, Asila V, Boitel-Aullen G. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors (Basel). 2019. DOI:10.3390/bios9020078
  • Xiong D, Chen M, Li H. Synthesis of para-sulfonatocalix[4]arene-modified silver nanoparticles as colorimetric histidine probes. Chem Commun. 2008;7(7):880–882.
  • Xiong D, Li H. Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nantechnology. 2008. DOI:10.1088/0957-4484/19/46/465502
  • Tauran Y, Grosso M, Brioude A, et al. Colourimetric and spectroscopic discrimination between nucleotides and nucleosides using para-sulfonato-calix[4]arene capped silver nanoparticles. Chem Commun. 2011;47(36):10013–10015.
  • Tauran Y, Rhimi M, Ueno R, et al. Cytosine: para-sulphonato-calix[4]arene assemblies: in solution in the solid-state and on the surface of hybrid silver nanoparticles. J Incl Phenom Macrocyclic Chem. 2013;77(1–4):213–221.
  • Tauran Y, Brioude A, Kim B, et al. Anionic calixarene-capped silver nanoparticles show species-dependent binding to serum albumins. Molecules. 2013;18(5):5993–6007.
  • Tauran Y, Brioude A, Shahgaldian P, et al. Calix-arene silver nanoparticles interactions with surfactants are charge size and critical micellar concentration dependent. Chem Commun. 2012;48(76):9483–9485.
  • Perret F, Tauran Y, Suwinska K, et al. Molecular recognition and transport of active pharmaceutical ingredients on anionic calix[4]arene-capped silver nanoparticles. J Chem. 2013. DOI:10.1155/2013/191828.
  • Tauran Y, Kim B, Coleman AW. Bio-applications of calix[n]arene capped silver nanoparticles. J Nanosci Nanotechnol. 2015;15(9):6308–6326.
  • Emrani AS, Danesh NM, Lavaee P, et al. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem. 2016;190:115–121.
  • Oladele OO, Olufemi BE, Olarinmoye AO, et al. Pharmacokinetics of streptomycin sulfate in staphylococcus aureus-infected clarias gariepinus (Burchell 1822). Egypt J Aquat Res. 2014;40:325–331.
  • Kumara M, Kakkara V, Mishra AK, et al. Intranasal delivery of streptomycin sulfate (STRS) loaded solid lipid nanoparticles to brain and blood. Int J Pharm. 2014;461(1–2):223–233.
  • Joyce DA. D-penicillamine pharmacokinetics and pharmacodynamic in man. Pharmacol Ther. 1989;42(3):405–427.
  • Levy RS, Fisher M, Alter JN. Penicillamine: review and cutaneous manifestations. J Am Acad Dermatol. 1983;8(4):548–558.
  • Cabanes A, Reig F, Garcia-Anton JM. Evaluation of free and liposome-encapsulated gentamycin for intramuscular sustained release in rabbits. Res Vet Sci. 1998;64(3):213–217.
  • Yu X, He Y, Jiang J, et al. A competitive immunoassay for sensitive detection of small molecules chloramphenicol based on luminol functionalized silver nanoprobe. Anal Chim Acta. 2014;812:236–242.
  • Nijmeijer SM, Samuriwo E, Van Duin CTM, et al. Oral chloramphenicol in dwarf goats-influence of vasopressin on its absorption and influence of vasopressin on its absorption and effect of diet on its biodegradation in ruminal fluid samples. J Vet Pharmacol Ther. 1990;13(4):408–414.
  • Mestorino ON, Errecalde JO. Chloramphenicol pharmacokinetics after intravenous and intramuscular administration in sheep. J Vet Med A. 1998;45(3):175–180.
  • Polte J, Tuaev X, Wuithschick M, et al. Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles. ACS Nano. 2012;6(7):5791–5802.
  • Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4(8):3974–3983.
  • Raju RK, Bloom JWG, An Y, et al. Substituent effects on non-covalent interactions with aromatic rings: insights from computational chemistry. ChemPhysChem. 2011;12(17):3116–3130.
  • Gao S, Yuan D, Lü J, et al. In situ synthesis of Ag nanoparticles in aminocalix[4]arene multilayers. J Colloid Interface Sci. 2010;341(2):320–325.
  • Suchomel P, Kvitek L, Prucek R, et al. Simple size-controlled synthesis of Au nanoparticles and their size dependent catalytic activity. Sci Rep. 2018. DOI:10.1038/s41598-018-22976-5.
  • Shalaeva YV, Morozova JE, Gubaidullin AT, et al. Gold nanoparticles, capped by carboxy-calix[4]resorcinarenes: effect of structure and concentration of macrocycles on the nanoparticles size and aggregation. J Incl Phenom Macrocyclic Chem. 2018;92(1–2):211–221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.