527
Views
16
CrossRef citations to date
0
Altmetric
Research Paper

Design of Nb2O5/graphene hybrid aerogel as polymer binder-free electrodes for lithium-ion capacitors

, , , , , , , & show all
Pages 625-634 | Received 26 Nov 2019, Accepted 20 Feb 2020, Published online: 01 Mar 2020

References

  • Arico AS, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4(5):366–377.
  • Zhu YW, Murali S, Stoller MD, et al. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537–1541.
  • Wang R, Chen Z, Hu N, et al. Nanocarbon-based electrocatalysts for rechargeable aqueous Li/Zn-Air batteries. ChemElectroChem. 2018;5(14):1745–1763.
  • Liu J, Xu C, Chen Z, et al. Progress in aqueous rechargeable batteries. Green Energy Environ. 2018;3(1):20–41.
  • Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 2009;38(9):2520–2531.
  • Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7(5):1597–1614.
  • Wang X, Yan C, Yan J, et al. Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device. Nano Energy. 2015;11:765–772.
  • Béguin F, Presser V, Balducci A, et al. Carbons and electrolytes for advanced supercapacitors. Adv Mater. 2014;26(14):2219–2251.
  • Naoi K, Ishimoto S, Miyamoto J-I, et al. Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ Sci. 2012;5(11):9363.
  • Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518–522.
  • Brezesinski K, Wang J, Haetge J, et al. Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. J Am Chem Soc. 2010;132(20):6982–6990.
  • Kim JW, Augustyn V, Dunn B. The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Adv Energy Mater. 2012;2(1):141–148.
  • Qu Q, Zhu Y, Gao X, et al. Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv Energy Mater. 2012;2(8):950–955.
  • Shen L, Lv H, Chen S, et al. Peapod-like Li3VO4/N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors. Adv Mater. 2017;29(27):1700142.
  • Choi HS, Kim T, Im JH, et al. Preparation and electrochemical performance of hyper-networked Li4Ti5O12/ carbon hybrid nanofiber sheets for a battery–supercapacitor hybrid system . Nanotechnology. 2011;22(40):405402.
  • Amatucci GG, Badway F, Du Pasquier A, et al. An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc. 2001;148(8):A930–A939.
  • O’Neill A, Khan U, Coleman JN. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size . Chem Mater. 2012;24(12):2414–2421.
  • Pan Q, Zhang Q, Zheng F, et al. Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries . ACS Nano. 2018;12(12):12578–12586.
  • Zhao L, Wu -H-H, Yang C, et al. Mechanistic origin of the high performance of Yolk@Shell Bi 2 S 3 @N-doped carbon nanowire electrodes . ACS Nano. 2018;12(12):12597–12611.
  • Zheng Z, Li P, Huang J, et al. High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design. J Energy Chem. 2020;41:126–134.
  • Anandhi P, Kumar VJS, Harikrishnan S. Funct Mater Lett. 2019;12(5):1950064.
  • Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518–522.
  • Chang K-H, Hu -C-C, Chou C-Y. Textural and capacitive characteristics of hydrothermally derived RuO2·xH2O nanocrystallites: independent control of crystal size and water content . Chem Mater. 2007;19(8):2112–2119.
  • Hu C-C, Huang Y-H. Effects of preparation variables on the deposition rate and physicochemical properties of hydrous ruthenium oxide for electrochemical capacitors. Electrochim Acta. 2001;46(22):3431–3444.
  • Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor . Chem Mater. 2004;16(16):3184–3190.
  • Brousse T, Toupin M, Dugas R, et al. Crystalline MnO[sub 2] as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc. 2006;153(12):A2171–A2180.
  • Sivaraman P, Kushwaha RK, Shashidhara K, et al. All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone]. Electrochim Acta. 2010;55(7):2451–2456.
  • Lim E, Jo C, Kim H, et al. Facile synthesis of Nb2O5 @carbon core–shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors . ACS Nano. 2015;9(7):7497–7505.
  • Liu M, Yan C, Zhang Y. Fabrication of Nb2O5 nanosheets for high-rate lithium ion storage applications. Sci Rep. 2015;5:8326.
  • Kong L, Zhang C, Zhang S, et al. High-power and high-energy asymmetric supercapacitors based on Li + -intercalation into a T-Nb2O5/graphene pseudocapacitive electrode . J. Mater. Chem. A. 2014;2(42):17962–17970.
  • Wang X, Li G, Chen Z, et al. High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv Energy Mater. 2011;1(6):1089–1093.
  • Wang R, Xu C, Sun J, et al. Flexible free-standing hollow Fe3O4/graphene hybrid films for lithium-ion batteries . J. Mater. Chem. A. 2013;1(5):1794–1800.
  • Wang R, Xu C, Sun J, et al. Free-standing and binder-free lithium-ion electrodes based on robust layered assembly of graphene and Co3O4 nanosheets. Nanoscale. 2013;5(15):6960–6967.
  • Gao T, Li H. Funct Mater Lett. 2019;12(6):1951004.
  • Wang Y, Jiang H, Ye S, et al. Funct Mater Lett. 2019;12(3):1950042.
  • Zhang J, Chen H, Sun X, et al. High intercalation pseudocapacitance of free-standing T-Nb2O5 nanowires@carbon cloth hybrid supercapacitor electrodes . J Electrochem Soc. 2017;164(4):A820–A825.
  • Kong L, Zhang C, Wang J, et al. Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-Ion intercalation pseudocapacitor . ACS Nano. 2015;9(11):11200–11208.
  • Su D, McDonagh A, Qiao S-Z, et al. High-Capacity Aqueous Potassium-Ion Batteries for Large-Scale Energy Storage. Adv Mater. 2016;n/a–n/a.
  • Wang R, Zhao Q, Zheng W, et al. Achieving high energy density in a 4.5 V all nitrogen-doped graphene based lithium-ion capacitor. J Mater Chem A. 2019;7(34):19909–19921.
  • Wang R, Han M, Zhao Q, et al. Construction of 3D CoO quantum dots/graphene hydrogels as binder-free electrodes for ultra-high rate energy storage applications. Electrochim Acta. 2017;243:152–161.
  • Wang RH, Xu CH, Lee J-M. High performance asymmetric supercapacitors: new NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy. 2016;19:210–221.
  • Arkhipova EA, Ivanov AS, Savilov SV, et al. Effect of nitrogen doping of graphene nanoflakes on their efficiency in supercapacitor applications. Funct Mater Lett. 2018;11(6):1840005.
  • Benedetti TM, Bazito FFC, Ponzio EA, et al. Electrostatic layer-by-layer deposition and electrochemical characterization of thin films composed of MnO2 nanoparticles in a room-temperature ionic liquid. Langmuir. 2008;24(7):3602–3610.
  • Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon–electrolyte systems. Acc Chem Res. 2013;46(5):1094–1103.
  • Masarapu C, Zeng HF, Hung KH, et al. Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano. 2009;3(8):2199–2206.
  • Nam K, Kim D, Yoo P, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science. 2006;312:885.
  • Zhu JX, Shi WH, Xiao N, et al. Oxidation-Etching Preparation of MnO2 Tubular Nanostructures for High-Performance Supercapacitors. ACS Appl Mater Interfaces. 2012;4(5):2769–2774.
  • Wu ZS, Ren WC, Wang DW, et al. High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors. ACS Nano. 2010;4(10):5835–5842.
  • Lu X, Yu M, Wang G, et al. H-TiO2@MnO2//H-TiO2 @C core-shell nanowires for high performance and flexible asymmetric supercapacitors . Adv Mater. 2013;25(2):267–272.
  • Wu S, Chen W, Yan L. Fabrication of a 3D MnO2/graphene hydrogel for high-performance asymmetric supercapacitors. ?J Mater Chem A. 2014;2(8):2765–2772.
  • Zhang G, Lou XW. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater. 2013;25(7):976–979.
  • Wang CH, Zhang X, Zhang DC, et al. Facile and low-cost fabrication of nanostructured NiCo2O4 spinel with high specific capacitance and excellent cycle stability. Electrochim Acta. 2012;63:220–227.
  • Wang HW, Hu ZA, Chang YQ, et al. Design and synthesis of NiCo2O4–reduced graphene oxide composites for high performance supercapacitors. J Mater Chem. 2011;21(28):10504–10511.
  • Wang HL, Gao QM, Jiang L. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small. 2011;7(17):2454–2459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.