Publication Cover
Materials Technology
Advanced Performance Materials
Volume 36, 2021 - Issue 3
421
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Mg-doped LiMnPO4/C cathode materials for enhanced lithium storage performance

, , &
Pages 153-158 | Received 15 Jan 2020, Accepted 22 Feb 2020, Published online: 02 Mar 2020

References

  • Taracson JM, Armand M. Issues and challenges facing lithium ion batteries[J]. Nature. 2001;414:359–367.
  • Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices[J]. Science. 2011;334(6058):928–935.
  • Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective[J]. J Am Chem Soc. 2013;135(4):1167–1176.
  • Mizushima K, Jones PC, Wiseman PJ, et al. LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density[J]. Mater Res Bull. 1980;15(6):783–789.
  • Peiyuan G, Zhou L, Zhenlu Y, et al. Recent progress of surface coating on cathode materials for high performance lithium-ion batteries. J Energy Chem. 2020;43:220–235.
  • Liu Z, Yu Q, Zhao Y, et al. Silicon oxides: a promising family of anode materials for lithium-ion batteries[J]. Chem Soc Rev. 2019;48(1):285–309.
  • Ma Y, Chen K, Ma J, et al. A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries[J]. Energy Environ Sci. 2019;12(1):273–280.
  • Liu D, Fan X, Li Z, et al. A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium ion batteries[J]. Nano Energy. 2019;58:786–796.
  • Liu Y, Fan X, Zhang Z, et al. Enhanced electrochemical performance of Li-rich layered cathode materials by combined Cr doping and LiAlO2 coating[J]. ACS Sustain Chem Eng. 2018;7(2):2225–2235.
  • Yan B, Li X, Bai Z, et al. Crumpled reduced graphene oxide conformally encapsulated hollow V2O5 nano/microsphere achieving brilliant lithium storage performance[J]. Nano Energy. 2016;24:32–44.
  • Zheng S, Dou A, Su M, et al. Influence of Nb doping on electrochemical performance of nanostructured cation disordered Li1+x/100Ni1/2-x/100Ti1/2-x/100Nbx/100O2 composites cathode for Li-ion batteries[J]. J Nanosci Nanotechnol. 2020;20(1):452–459.
  • Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc. 1997;144(4):1188–1194.
  • Yu F, Zhang L, Zhu M, et al. Overwhelming microwave irradiation assisted synthesis of olivine-structured LiMPO4 (M= Fe, Mn, Co and Ni) for Li-ion batteries[J]. Nano Energy. 2014;3:64–79.
  • Rui X, Zhao X, Lu Z, et al. Olivine-type nanosheets for lithium ion battery cathodes[J]. ACS Nano. 2013;7(6):5637–5646.
  • Zaghib K, Guerfi A, Hovington P, et al. Review and analysis of nanostructured olivine-based lithium recheargeable batteries: status and trends[J]. J Power Sources. 2013;232:357–369.
  • Hu J, Xiao Y, Tang H, et al. Tuning Li-ion diffusion in α-LiMn1–xFexPO4 nanocrystals by antisite defects and embedded β-phase for advanced Li-ion batteries[J]. Nano Lett. 2017;17(8):4934–4940.
  • Wi S, Park J, Lee S, et al. Insights on the delithiation/lithiation reactions of LixMn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques[J]. Nano Energy. 2017;39:371–379.
  • Fu X, Chang K, Li B, et al. Low-temperature synthesis of LiMnPO4/RGO cathode material with excellent voltage platform and cycle performance[J]. Electrochim Acta. 2017;225:272–282.
  • Yonemura M, Yamada A, Takei Y, et al. Comparative kinetic study of olivine LixMPO4 (M = Fe, Mn)[J]. J Electrochem Soc. 2004;151(9):A1352–A1356.
  • Cao Y, Xu L, Xie X, et al. Controllable synthesis of micronano-structured LiMnPO4/C cathode with hierarchical spindle for lithium ion batteries[J]. Ceram Int. 2019;45(4):4886–4893.
  • Ragupathi V, Panigrahi P, Nagarajan GS. Enhanced electrochemical performance of nanopyramid-like LiMnPO4/C cathode for lithium-ion batteries[J]. Appl Surf Sci. 2019;495:143541.
  • Khalfaouy REL, Turan S, Dermenci KB, et al. Nickel-substituted LiMnPO4/C olivine cathode material: combustion synthesis, characterization and electrochemical performances[J]. Ceram Int. 2019;45(14):17688–17695.
  • Yang H, Liu J, Wang X, et al. Positive surface pseudocapacitive behavior-induced fast and large li-ion storage in mesoporous LiMnPO4@C nanofibers[J]. ChemSusChem. 2019;12(16):3817–3826.
  • Bakenov Z, Taniguchi I. Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries[J]. Electrochem Commun. 2010;12(1):75–78.
  • Ding D, Maeyoshi Y, Kubota M, et al. Highly improved performances of LiMn0.7Fe0.3PO4 cathode with in situ electrochemically reduced graphene oxide[J]. J Alloys Compd. 2019;793:627–634.
  • Wang D, Ouyang C, Drézen T, et al. Improving the electrochemical activity of LiMnPO4 via Mn-site substitution[J]. J Electrochem Soc. 2010;157(2):A225–A229.
  • Yang G, Ni H, Liu H, et al. The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M = Mg, V, Fe, Co, Gd)[J]. J Power Sources. 2011;196(10):4747–4755.
  • Yang H, Fu C, Sun Y, et al. Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient[J]. Carbon. 2020;158:102–109.
  • Vásquez FA, Calderón JA. Vanadium doping of LiMnPO4 cathode material: correlation between changes in the material lattice and the enhancement of the electrochemical performance[J]. Electrochim Acta. 2019;325:134930.
  • Lee JW, Park MS, Anass B, et al. Electrochemical lithiation and delithiation of LiMnPO4: effect of cation substitution[J]. Electrochim Acta. 2010;55(13):4162–4169.
  • Shiratsuchi T, Okada S, Doi T, et al. Cathodic performance of LiMn1−xMxPO4 (M = Ti, Mg and Zr) annealed in an inert atmosphere[J]. Electrochim Acta. 2009;54(11):3145–3151.
  • Xia Y, Zheng J, Wang C, et al. Designing principle for Ni-rich cathode materials with high energy density for practical applications[J]. Nano Energy. 2018;49:434–452.
  • Drezen T, Kwon NH, Bowen P, et al. Effect of particle size on LiMnPO4 cathodes[J]. J Power Sources. 2007;174(2):949–953.
  • Ni JF, Zhou HH, Chen JT, et al. LiFePO4 doped with ions prepared by co-precipitation method[J]. Mater Lett. 2005;59(18):2361–2365.
  • Gao X, Hu G, Peng Z, et al. LiFePO4 cathode power with high energy density synthesized by water quenching treatment[J]. Electrochim Acta. 2009;54(21):4777–4782.
  • Ding Y H, Zhang P. Effect of Mg and Co co-doping on electrochemical properties of LiFePO4[J]. Trans Nonferrous Met Soc China. 2012;22:s153–s156.
  • Yan B, Lin S, Kang L, et al. Spinel structured LiMn2O4 prepared by laser annealing[J]. Mater Technol. 2020. https://doi.org/10.1080/10667857.2020.1723834
  • Wang Q, Huang J, Pan L, et al. Controllable synthesis of 3D urchin-like V2O5 as high-stability for lithium-ion battery cathodes[J]. Funct Mater Lett. 2019;12:1950037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.