Publication Cover
Materials Technology
Advanced Performance Materials
Volume 36, 2021 - Issue 4
444
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Antibacterial activity and biocompatibility of curcumin/TiO2 nanotube array system on Ti6Al4V bone implants

, &
Pages 221-232 | Received 31 Oct 2019, Accepted 10 Mar 2020, Published online: 17 Apr 2020

References

  • Malekani J, Schmutz B, Gu Y, et al. Orthopedic bone plates: evolution in Structure, Implementation technique and biomaterial. GSTF J Eng Technol. 2012;1(1):135–140.
  • Cats-baril W, Gehrke T, Ba KH, et al. Consensus statement international consensus on periprosthetic joint infection: description of the consensus process. Clin Orthop Relat Res. 2013;471(12):4065–4075.
  • Lentino JR. Prosthetic joint infections : bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis. 2017;36(September):1157–1161.
  • Spellberg B, Guidos R, Gilbert D, et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the infectious diseases society of America. Clin.Infect.Dis. 2008;46(1537–6591 (Electronic)):155–164.
  • Bush K, Courvalin P, Dantas G, et al. Tackling antibiotic resistance. Nat Rev Microbiol. 2011;9(12):894–896.
  • Elbourne A, Crawford RJ, Ivanova EP. Nano-structured antimicrobial surfaces: from nature to synthetic analogues. J Colloid Interface Sci. 2017. DOI:10.1016/j.jcis.2017.07.021
  • Sun D, Babar Shahzad M, Li M, et al. Antimicrobial materials with medical applications. Mater Technol. 2015;30(sup6):B90–B95.
  • Goodman SB, Yao Z, Keeney M, et al. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34(13):3174–3183.
  • Zhao L, Chu PK, Zhang Y, et al. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater. 2009;91(1):470–480.
  • Harris LG, Tosatti S, Wieland M, et al. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted- poly(ethylene glycol) copolymers. Biomaterials. 2004;25(18):4135–4148.
  • Zheng Y, Li J, Liu X, et al. Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. Int J Nanomedicine. 2012;7:875–884.
  • Girase B, Depan D, Shah JS, et al. Silver-clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater Sci Eng C. 2011;31(8):1759–1766.
  • Liang Y, Wang SH, Guo PF. Effects of Ag on the photocatalytic activity of multiple layer TiO2 films. Mater Technol. 2017;32(1):46–51.
  • Misra RDK, Girase B, Depan D, et al. Hybrid nanoscale architecture for enhancement of antimicrobial activity: immobilization of silver nanoparticles on thiol-functionalized polymer crystallized on carbon nanotubes. Adv Eng Mater. 2012;14(4):93–100.
  • Ren L, Chong J, Loya A, et al. Determination of Cu2+ ions release rate from antimicrobial copper bearing stainless steel by joint analysis using ICP-OES and XPS. Mater Technol. 2015;30(sup6):B86-B89.
  • Wang S, Zhu W, Yu P, et al. Antibacterial nanostructured copper coatings deposited on tantalum by magnetron sputtering. Mater Technol. 2015;30(sup6):B120–B125.
  • Ma Z, Yao M, Liu R, et al. Study on antibacterial activity and cytocompatibility of Ti-6Al-4V-5Cu alloy. Mater Technol. 2015;30(sup6):B80-B85.
  • He T, Zhu W, Wang X, et al. Polydopamine assisted immobilisation of copper(II) on titanium for antibacterial applications. Mater Technol. 2015;30(sup6):B68-B72.
  • Ma Z, Ren L, Liu R, et al. Effect of Heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu Alloy. J Mater Sci Technol. 2015;31(7):723–732.
  • Luo F, Tang Z, Xiao S, et al. Study on properties of copper-containing austenitic antibacterial stainless steel. Mater Technol. 2019;34(9):525–533.
  • Liu H, Li D, Yang X, et al. Fabrication and characterization of Ag 3 PO 4/TiO 2 heterostructure with improved visible-light photocatalytic activity for the degradation of methyl orange and sterilization of E. coli. Mater Technol. 2018:1–12.
  • Rawat J, Rana S, Srivastava R, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng C. 2007;27(3):540–545.
  • Rana S, Rawat J, Misra RDK. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: tiO2-NiFe2O4 biomaterial system. Acta Biomater. 2005;1(6):691–703.
  • Sunkara BK, Misra RDK. Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: A biomaterial system. Acta Biomater. 2008;4(2):273–283.
  • Rana S, Rawat J, Sorensson MM, et al. Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: A biomaterial system. Acta Biomater. 2006;2(4):421–432.
  • Venkatasubramanian R, Srivastava RS, Misra RDK. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants. Mater Sci Technol. 2008;24(5):589–595.
  • David TM, Wilson P, Mahesh R, et al. Photocatalytic water splitting of TiO2nanotubes powders prepared via rapid breakdown anodization sensitized with Pt, Pd and Ni nanoparticles. Mater Technol. 2018;33(4):288–300.
  • Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;15(8):13849–13880.
  • Mijnendonckx K, Leys N, Mahillon J, et al. Antimicrobial silver: uses, toxicity and potential for resistance. BioMetals. 2013;26(4):609–621.
  • Hoet S, Opperdoes F, Brun R, et al. Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep. 2004;21(3):353–364.
  • Tagboto S, Townson S. Antiparasitic properties of medicinal plants and other naturally occurring products. Adv Parasitol. 2001;50:199–295.
  • Ginsburg H, Deharo E. A call for using natural compounds in the development of new antimalarial treatments - an introduction. Malar J. 2011;10(1):S1.
  • Abdallah EM. Plants: an alternative source for antimicrobials. J Appl Pharm Sci. 2011;1(6):16–20.
  • Nune KC, Somani MC, Spencer CT, et al. Cellular response of Staphylococcus aureus to nanostructured metallic biomedical devices: surface binding and mechanism of disruption of colonization. Mater Technol. 2017;32(1):22–31.
  • Depan D, Misra RDK. On the determining role of network structure titania in silicone against bacterial colonization: mechanism and disruption of biofilm. Mater Sci Eng C. 2014;34(1):221–228.
  • Tyagi P, Singh M, Kumari H, et al. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One. 2015;10(3):1–15.
  • Bhowmik D, Kumar KP, Chandira M, et al., Jit. Turmeric: a herbal and traditional medicine. Arch Appl Sci Res. 2009;1(2):86–108.
  • Jain S, Krishna Meka SR, Chatterjee K. Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering. Biomed Mater. 2016;11(5):055007.
  • Teow SY, Liew K, Ali SA, et al. Antibacterial action of curcumin against staphylococcus aureus: a brief review. J Trop Med. 2016;2016:1–10.
  • Gul P, Bakht J. Antimicrobial activity of turmeric extract and its potential use in food industry. J Food Sci Technol. 2015;52(4):2272–2279.
  • Gunes H, Gulen D, Mutlu R, et al. Antibacterial effects of curcumin: an in vitro minimum inhibitory concentration study. Toxicol Ind Health. 2016;32(2):246–250.
  • Yang L, Zheng Z, Qian C, et al. Curcumin-functionalized silk biomaterials for anti-aging utility. J Colloid Interface Sci. 2017;496:66–77.
  • Mohammed NA, Habil NY. Evaluation of antimicrobial activity of Curcumin against two oral bacteria. Systems. 2015;3(2):18–21.
  • Saha S, Kumar R, Pramanik K, et al. Interaction of osteoblast -TiO2 nanotubes in vitro: the combinatorial effect of surface topography and other physico-chemical factors governs the cell fate. Appl Surf Sci. 2018;449:152–165.
  • Saha S, Pramanik K, Biswas A. Silk fibroin coated TiO2 nanotubes for improved osteogenic property of Ti6Al4V bone implants. Mater Sci Eng C. 2019;105:109982.
  • Li C, Luo T, Zheng Z, et al. Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Biomater. 2015;11(1):222–232.
  • He R, Hu X, Tan HC, et al. Surface modification of titanium with curcumin: a promising strategy to combat fibrous encapsulation. J Mater Chem B. 2015;3(10):2137–2146.
  • Li H, Cui Q, Feng B, et al. Antibacterial activity of TiO 2 nanotubes: influence of crystal phase, morphology and Ag deposition. Appl Surf Sci. 2013;284:179–183.
  • Lan MY, Liu CP, Huang HH, et al. Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes. PLoS One. 2013;8(10):4–11.
  • Masood SH, Aslam N. In Vitro susceptibility test of different clinical isolates against ceftriaxone. Oman Med J. 2010;25(3):199–202.
  • Moran JM, Roncero-Martin R, Rodriguez-Velasco FJ, et al. Effects of curcumin on the proliferation and mineralization of human osteoblast-like cells: implications of nitric oxide. Int J Mol Sci. 2012;13(12):16104–16118.
  • Attari F, Zahmatkesh M, Aligholi H, et al. Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin. DARU, J Pharm Sci. 2015;23(1):2703–2706.
  • Ramos-Corella KJ, Sotelo-Lerma M, Gil-Salido AA, et al. Controlling crystalline phase of TiO 2 thin films to evaluate its biocompatibility. Mater Technol. 2019;34(8):455–462.
  • Söderholm K-JM. Coatings in dentistry—a review of some basic principles. Coatings. 2012;2(3):138–159.
  • Chen X, Zou LQ, Niu J, et al. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules. 2015;20(8):14293–14311.
  • Löberg J, Mattisson I, Hansson S, et al. Characterisation of titanium dental implants I: critical assessment of surface roughness parameters. Open Biomater J. 2010;2:18–35.
  • Rupp F, Gittens RA, Scheideler L, et al. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomaterialia. 2014;10(7):2894–2906.
  • Hazra MK, Roy S, Bagchi B. Hydrophobic hydration driven self-assembly of curcumin in water: similarities to nucleation and growth under large metastability, and an analysis of water dynamics at heterogeneous surfaces. J Chem Phys. 2014;141(18):18C501.
  • Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34(34):8533–8554.
  • Rojo L, Barcenilla JM, Vázquez B, et al. Intrinsically antibacterial materials based on polymeric derivatives of eugenol for biomedical applications. Biomacromolecules. 2008;9(9):2530–2535.
  • Lichter JA, Van Vlietpa KJ, Rubner MF. Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules. 2009;42(22):8573–8586.
  • Kumavat SD, Chaudhari YS, Borole P, et al. Degradation Studies of Curcumin. Int J Pharm Rev Res. 2013;3(2):50–55.
  • Tønnesen HH, Karlsen J, van Henegouwen GB. Studies on curcumin and curcuminoids VIII. Photochemical stability of curcumin. Z Lebensm Unters Forsch. 1986;183(2):116–122.
  • Gimeno M, Pinczowski P, Pérez M, et al. A controlled antibiotic release system to prevent orthopedic-implant associated infections: an in vitro study. Eur J Pharm Biopharm. 2015;96:264–271.
  • Rasmussen RV, Fowler VG Jr, Skov R, et al. Future challenges and treatment of Staphylococcus aureus bacteremia with emphasis on MRSA. Future Microbiol. 2011;6(1):43–56.
  • Rodvold KA, Mcconeghy KW. Methicillin-resistant staphylococcus aureus therapy: past, present, and future. Clin Infect Dis. 2014;58(1):S20-S27.
  • Varshney GK, Saini RK, Gupta PK, et al. Effect of curcumin on the diffusion kinetics of a hemicyanine dye, LDS-698, across a lipid bilayer probed by second harmonic spectroscopy. Langmuir. 2013;29(9):2912–2918.
  • Barry J, Fritz M, Brender JR, et al. Determining the effects of lipophilic drugs on membrane structure by solid-state NMR spectroscopy: the case of the antioxidant curcumin. J Am Chem Soc. 2009;131(12):4490–4498.
  • Kim SJ, Son TG, Park HR, et al. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem. 2008;283(21):14497–14505.
  • Ormond DR, Shannon C, Oppenheim J, et al. Stem cell therapy and curcumin synergistically enhance recovery from spinal cord injury. PLoS One. 2014;9(2):e88916.
  • Baranowski A, Klein A, Ritz U, et al. Surface functionalization of orthopedic titanium implants with bone sialoprotein. PLoS One. 2016;11(4):e0153978.
  • Yang H, Gu Q, Huang C, et al. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacogn Mag. 2012;8(31):202.
  • Deshmukh RM, Kulkarni SS. A review on biomaterials in orthopedic bone plate application. Int J Curr Eng Technol. 2015;55(44):2277–4106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.