Publication Cover
Materials Technology
Advanced Performance Materials
Volume 36, 2021 - Issue 5
337
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Study on the optical spectra of MgAl2O4 with oxygen vacancies

, , , , , & show all
Pages 279-285 | Received 10 Dec 2019, Accepted 28 Mar 2020, Published online: 06 Apr 2020

References

  • Osipov VV, Shitov VA, Luk’yashin KE, et al. Synthesis and study of Fe2+: MgAl2O4 ceramics for active elements of solid-state lasers. Quantum Electron. 2019;49: 89–94.
  • Valiev D, Stepanov S, Khasanov O, et al. Synthesis and optical properties of Tb3+ or Dy3+-doped MgAl2O4 transparent ceramics. Opt Mater. 2019;91:396–400.
  • Liu X, Qian X, Zheng P, et al. Preparation and optical properties of MgAl2O4-Ce: GdYAG composite ceramic phosphors for white LEDs. J Eur Ceram Soc. 2019;39:4965–4971.
  • Song E, Jiang X, Zhou Y, et al. Heavy Mn2+ doped MgAl2O4 phosphor for high-efficient near-infrared light-emitting diode and the night-vision application. Adv Opt Mater. 2019;1901105. DOI:10.1002/adom.201901105
  • Chi NTK, Quang NV, Tuan NT, et al. Deep red emitting MgAl2O4: Cr3+ phosphor for solid state lighting. J Electron Mater. 2019;48:5891–5899.
  • Song EH, Zhou YY, Wei Y, et al. A thermally stable narrow-band green-emitting phosphor MgAl2O4: Mn2+for wide color gamut backlight display application. J Mater Chem C. 2019;7:8192–8198.
  • Motloung SV, Motaung TE, Hlatshwayo TT, et al. Associated aspects on structure, morphology and photoluminescence of MgAl2O4: x%Gd3+ nanophosphor prepared via citrate Sol–Gel method. J Electron Mater. 2019;48:3947–3957.
  • Wang Z, Jiao S, Xu Y, et al. Effects of heat-treatment on photoluminescence properties of MgAl2O4: Eu3+red phosphors synthesized by a solution combustion method. J Lumin. 2019;211:108–113.
  • Kobylinska A, Kniec K, Maciejewska K, et al. The influence of dopant concentration and grain size on the ability for temperature sensing using nanocrystalline MgAl2O4: Co2+,Nd3+ luminescent thermometers. New J Chem. 2019;43:6080–6086.
  • Crochemore GB, Ito ARP, Goulart CA, et al. Identification of humidity sensing mechanism in MgAl2O4 by impedance spectroscopy as function of relative humidity. Mater Res. 2018;21(4):e20170729.
  • Dabros TMH, Kramer H, Høj M, et al. The influence of active phase loading on the hydrodeoxygenation (HDO) of ethylene glycol over promoted MoS2/MgAl2O4 catalysts. Top Catal. 2019;62: 752–763.
  • Pankina GV, Shumyantsev AV, Chernyak SA, et al. Influence of structural properties of support on the activation of Fe–K/MgAl2O4 catalysts in syngas. Kinet Catal. 2019;60: 672–680.
  • Sawai S, Uchino T. Visible photoluminescence from MgAl2O4 spinel with cation disorder and oxygen vacancy. J Appl Phys. 2012;112:103523.
  • Sosman LP, López A, Pedro SS, et al. Photoluminescence of the Mg2Al4Si5O18-Al2O3-MgAl2O4-SiO2 ceramic system containing Fe3+ and Cr3+ as impurity ions. Opt Mater. 2018;76:353–358.
  • Summers GP, White GS, Lee KH, et al. Radiation damage in MgAl2O4. Phys Rev B. 1980;21:2578–2584.
  • Luo W, Xie R, Ivanov M, et al. Effects of LiF on the microstructure and optical properties of hot-pressed MgAl2O4 ceramics. Ceram Int. 2017;43:6891–6897.
  • Do JY, Son N, Park N-K, et al. Reliable oxygen transfer in MgAl2O4 spinel through the reversible formation of oxygen vacancies by Cu2+/Fe3+ anchoring. Appl Energy. 2018;219:138–150.
  • Rébola A, Fong DD, Eastman JA, et al. First-principles study of compensation mechanisms in negatively charged LaGaO3/MgAl2O4 interfaces. Phys Rev B. 2013;87:245117.
  • Lushchik A, Dolgov S, Feldbach E, et al. Creation and thermal annealing of structural defects in neutron-irradiated MgAl2O4 single crystals. Nucl Inst Methods Phys Res B. 2018;435: 31–37.
  • Seeman V, Feldbach E, Kärner T, et al. Fast-neutron-induced and as-grown structural defects in magnesium aluminate spinel crystals with different stoichiometry. Opt Mater. 2019;91:42–49.
  • Jiang S, Lu T, Zhang J, et al. First-principles study on the effects of point vacancies on the spectral properties of MgAl2O4. Solid State Commun. 2011;151:29–32.
  • Jiang S, Lu T, Long Y, et al. Ab initio many-body study of the electronic and optical properties of MgAl2O4 spinel. J Appl Phys. 2012;111:043516.
  • Bickers NE, Scalapino DJ, White SR. Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation and dynamics for the two-dimensional hubbard model. Phys Rev Lett. 1989;62:961–964.
  • Platonenko A, Gryaznov D, Kotomin EA, et al. Hybrid density functional calculations of hyperfine coupling tensor for hole-type defects in MgAl2O4. Nucl Inst Methods Phys Res B. 2020;464: 60–64.
  • Chen W, Pasquarello A. Correspondence of defect energy levels in hybrid density functional theory and many-body perturbation theory. Phys Rev B. 2013;88:4673–4677.
  • Perdew JP, Ernzerhof M, Burke K. Rationale for mixing exact exchange with density functional approximations. J Chem Phys. 1996;105:9982–9985.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169.
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953.
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13:5188–5192.
  • Lyons JL, Janotti A, Van de Walle CG. Carbon impurities and the yellow luminescence in GaN. Appl Phys Lett. 2010;97:152108.
  • Lany S, Zunger A. Accurate prediction of defect properties in density functional supercell calculations. Modell Simul Mater Sci Eng. 2009;17: 084002.
  • Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys. 2003;118:8207–8215.
  • Bortz M, French R, Jones D, et al. Temperature dependence of the electronic structure of oxides: MgO, MgAl2O4 and Al2O3. Phys Scr. 1990;41:537.
  • Alkauskas A, Broqvist P, Pasquarello A. Defect energy levels in density functional calculations: alignment and band gap problem. Phys Rev Lett. 2008;101:046405.
  • Saniz R, Xu Y, Matsubara M, et al. A simplified approach to the band gap correction of defect formation energies: Al, Ga, and In-doped ZnO. J Phys Chem Solids. 2013;74:45–50.
  • Alkauskas A, Lyons JL, Steiauf D, et al. First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: the example of GaN and ZnO. Phys Rev Lett. 2012;109:267401.
  • Pathak N, Ghosh PS, Gupta SK, et al. An insight into the various defects-induced emission in MgAl2O4 and their tunability with phase behavior: combined experimental and theoretical approach. J Phys Chem C. 2016;120:4016–4031.
  • Moriwake H, Tanaka I, Oba F, et al. Formation energy of Cr/Al vacancies in spinel MgCr2O4 and MgAl2O4 by first-principles calculations. Phys Rev B. 2002;65:153103.
  • Zhang F, Zhang Q, Liu T. Computer simulation of intrinsic defects in MgAl2O4. J Univ Shanghai Sci Technol. 2005;27:104–106.
  • Bacorisen D, Smith R, Uberuaga BP, et al. Atomistic simulations of radiation-induced defect formation in spinels: MgAl2O4,MgGa2O4, and MgIn2O4. Phys Rev. 2006;B 74:214105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.