Publication Cover
Materials Technology
Advanced Performance Materials
Volume 36, 2021 - Issue 5
220
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Structural and functional properties of rare earth-based (NiO-CGO) nanocomposite produced by effective multiple doping approach via co-precipitation

, , , ORCID Icon &
Pages 296-307 | Received 19 Jan 2020, Accepted 08 Apr 2020, Published online: 23 Apr 2020

References

  • Artini C, Locardi F, Pani M, et al. Yb-doped Gd2O2CO3: structure, microstructure, thermal and magnetic behaviour. J Phys Chem Solids. 2017;103:59–66.
  • Rajeshwar K, Osugi ME, Chanmanee W, et al. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C: Photochem Reviews. 2008;9:171–192.
  • Liu Y, Fan L, Cai Y, et al. Superionic conductivity of Sm3+, Pr3+, and Nd3+ triple-doped ceria through bulk and surface two-step doping approach. ACS Appl Mater Interfaces. 2017;928:23614–23623.
  • Presto S, Artini C, Pani M, et al. Ionic conductivity and local structural features in Ce1−xSmxO2−x/2. Phys Chem Chem Phys. 2018;20:28338–28345.
  • Radhika D, Karthik K, Nesaraj AS, et al. Facile low-temperature synthesis and application of La0.85Sr0.15Co0.85Fe0.15O3-δ as superior cathode for LT-SOFCs using C-TAB as surfactant’ Taylor and Francis. Mater Res Innovation. 2019. DOI:10.1080/14328917.2019.1686858
  • Liu Y, Fan L, Cai Y, et al. Superionic conductivity of Sm3+, Pr3+ and Nd3+ triple-doped ceria through bulk and surface two-step doping approach. ACS Appl Mater Interfaces. 2017;928:23614–23623.
  • Karthik K, Dhanuskodi S, Gobinath C, et al. Ultrasonic-assisted CdO–MgO nanocomposite for multifunctional applications. Mater Technol. 2019;34:403–414.
  • Karthik K, Dhanuskodi S, Prabukumar S, et al. Multifunctional properties of chemical precipitated CdO–NiO–ZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities. J Mater Sci: Mater Electron. 2018;29:5459–5471.
  • Rana S, Rawat J, Misra RD. Acta biomaterialia, anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: tiO2-NiFe2O4 bio-material system. Acta Biomater. 2005;1:691.
  • Karthik K, Dhanuskodi S, Gobinath C, et al. Microwave-assisted synthesis of CdO–ZnO nanocomposite and its antibacterial activity against human pathogens. Spectrochimic Acta Part A Mol Biomol Spectrosc. 2015;139:7–12.
  • Karthik K, Dhanuskodi S, Prabukumar S, et al. Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J Photochem Photobiol B Bio. 2019;190:8–20.
  • Karthik K, Vijayalakshmi S, Phuruangrat A, et al. Multifunctional applications of microwave-assisted biogenic TiO2 nanoparticles. J Clust Sci. 2019;30:965–972.
  • Nune KC, Somani MC, Spencer CT, et al. Cellular response of Staphylococcus aureus to nanostructured metallic biomedical devices: surface binding and mechanism of disruption of colonization. Mater Technol. 2017;32:22–31.
  • Liu H, Li DR, Yang XL, et al. Fabrication and characterization of Ag3PO4/TiO2heterostructure with improved visible-light photocatalytic activity for the degradation of methyl orange and sterilization of E.coli. Mater Technol. 2019;34:192–203.
  • Ramos-Corella KJ, Sotelo-Lerma M, Gil-Salido AA, et al. Controlling crystalline phase of TiO2 thin films to evaluate its biocompatibility. Mater Technol. 2019;34:455–462.
  • Rawat J, Rana S, Srivastava R, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng C. 2007;27:540.
  • Jia Z, Misra RDK. Tunable ZnO quantum dots for bioimaging: synthesis and photoluminescence. Mater Technol Adv Perform Mater. 2013;28:221.
  • Chandrasekharan S, Misra RDK. Photonic antioxidant ZnS(Cd) nanorod synthesis for drug carrier and bioimaging. Mater Technol Adv Perform Mater. 2013;28:228.
  • Sunkara BK, Misra RDK. Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomater. 2008;4:273.
  • Ma Z, Ren L, Liu R, et al. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti−6Al−4V−5Cu alloy. J Mater Sci Technol. 2015;31:723–732.
  • Venkatasubramanian R, Srivastava RS, Misra RDK. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants. Mater Sci Technol. 2008;24:589.
  • David TM, Wilson P, Mahesh R, et al. Photocatalytic water splitting of TiO2 nanotubes powders prepared via rapid breakdown anodization sensitized with Pt, Pd and Ni nanoparticles. Mater Technol. 2018;33:288–300.
  • Liang Y, Wang SH, Guo PF. Effects of Ag on the photocatalytic activity of multiple layer TiO2 films. Mater Technol. 2017;32:46–51.
  • Luo F, Tang Z. Study on properties of copper-containing austenitic antibacterial stainless steel. Mater Technol. 2019;34(9):525.
  • Misra RDK. Quantum dots for tumor-targeted drug delivery and cell imaging. Nanomedicine. 2008;3:271.
  • Yuan Q, Shah J, Hein S, et al. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater. 2010;6:1140.
  • Kaviyarasu K, Manikandan E, Kennedy J, et al. A comparative study on the morphological features of highly ordered MgO:AgO nanocube arrays prepared via a hydrothermal method. RSC Adv. 2015;5:82421–82428.
  • Vidic J, Stankic S, Haque F, et al. Selective antibacterial effects of mixed ZnMgO nanoparticles. J Nanopart Res. 2013;15:1595.
  • Gupta J, Bahadur D. Defect-mediated reactive oxygen species generation in Mg-substituted ZnO nanoparticles: efficient nanomaterials for bacterial inhibition and cancer therapy. ACS Omega. 2018;3:2956–2965.
  • Ayodhya D, Veerabhadram G. A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. Mater Today Energy. 2018;9:83–113.
  • Karthik K, Shashank M, Revathi V, et al. Facile microwave-assisted green synthesis of NiO nanoparticles from andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Mol Cryst Liq Cryst. 2018;673:70–80.
  • Linda T, Muthupoongodi S, Sahaya Shajan X, et al. Fabrication and characterization of chitosan templated CdO/NiO nano composite for dye degradation. Optik. 2016;127:8287–8293.
  • Srikesh G, Nesaraj AS. Chemical synthesis of Co and Mn co-doped NiO nanocrystalline materials as high-performance electrode materials for potential application in supercapacitors. Ceram Int. 2016;42:5001–5010.
  • Haifeng Lv, Shichun Mu.Nano-ceramic support materials for low temperature fuel cell catalysts. Nanoscale 2014;6:5063–5074.
  • Arabaci A. Synthesis and characterization of Pr/Gd co-doped ceria by using the citric acid–nitrate combustion method. Solid State Ion. 2018;326:69–76.
  • Dell’Agli G, Spiridigliozzi L, Pansini M, et al. Effect of the carbonate environment on morphology and sintering behaviour of variously co-doped (Ca, Sr, Er, Pr) Samarium-doped ceria in co-precipitation/hydrothermal synthesis. Ceram Int. 2018;44:17935–17944.
  • Namitha R, Radhika D, Krishnamurthy G. Hydrothermally synthesized carbon nanotubes for electrochemical hydrogen storage application. Issue Chem Chem Technol. 2019;3:30–34.
  • Tao Y, Shao J, Wang J, et al. Morphology control of Ce0.9Gd0.1O1.95 nano powder synthesized by sol-gel method using PVP as a surfactant. J Alloy Compd. 2009;484:729.
  • Radhika D, Samson Nesaraj A. Low temperature chemical precipitation and characterization of ceria based ceramic composite oxide materials. J Metals Mater Miner. 2013;23:67.
  • Artini C, Carnasciali MM, Viviani M, et al. Structural properties of Sm-doped ceria electrolytes at the fuel cell operating temperatures. Solid State Ion. 2018;315:85–91.
  • Kannan K, Radhika D, Nesaraj AS, et al. Cost-effective method of Co-doped rare earth-based ceria (Y-CGO) nanocompoiste as electrolyte for LT-SOFCs using C-TAB as surfactant. Mater Res Innovation. 2019. DOI:10.1080/14328917.2019.1706032
  • Chitsaz A, Jalilpour M, Fathalilou M. Effects of PVP and CTAB surfactants on the morphology of cerium oxide nanoparticles synthesized via co-precipitation method. Int J Mater Res. 2013;104:511.
  • Radhika D, Nesaraj AS, Namitha. R. Cost effective synthesis of Co-doped CeO2 nano composite oxides using CTAB as surfactant: application for LT-SOFC as electrolyte. Utopia Global Educ. 2017;3:1.
  • Radhika D, Nesaraj AS. Chemical precipitation and characterization of multi-component perovskite oxide nanoparticles – possible cathode materials for low temperature solid oxide fuel cell. Int J Nano Dimension. 2014;5:1.
  • Jasmine Ketzial J, Radhika D, Nesaraj AS. Low temperature preparation and characteri zation of doped BaCeO3 nanoparticles by chemical precipitation. Int J Indus Chem. 2013;4:1.
  • van Driel BA, Kooyman PJ, van den Berg KJ, et al. A quick assessment of the photocatalytic activity of TiO2 pigments — from lab to conservation studio. Microchem J. 2016;126:162–171.
  • Gao Z, Mogni LV, Miller EC, et al. A perspective on low temperature solid oxide fuel cells. Energy Environ Sci. 2016;9:1602.
  • Steele BCH. Appraisal of CGO electrolytes for IT-SOFC operating at 500 °C. Solid State Ion. 2000;129:95–110.
  • Munoz-García AB, Bugaris DE, Pavone M, et al. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6-δ, an electrode material for symmetric solid oxide fuel cells. J Am Chem Soc. 2012;134:6826–6833.
  • Anderson HU, Tai L, Chen CC, et al. Solid oxide fuel cells (SOFC-IV). Proc Electrochem Soc. 1995;95:375–384.
  • Gauckler LJ, Beckel D, Buergler BE, et al. Solid oxide fuel cells: systems and materials. CHIMIA Int J Chem. 2004;58:837–850.
  • Karthik K, Pushpa S, Naik MM, et al. Influence of Sn and Mn on structural, optical and magnetic properties of spray pyrolysed CdS thin films. Mater Res Innovations. 2020;24(2):82–86.
  • Deepi A, Srikesh G, Nesaraj AS. One pot reflux synthesis of reduced graphene oxide decorated with silver/cobalt oxide: A novel nano composite material for high capacitance applications. Ceram Int. 2018;44:20524–20530.
  • Rehana D, Mahendran D, Senthilkumar R, et al. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother. 2017;89:1067–1077.
  • Mogensen M, Skaarup S. Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ion. 1996;86–88:1151–1160.
  • Hassan HFH, Mansour AM, Abo-Youssef AMH, et al. Zinc oxide nanoparticles as a novel anticancer approach; in vitro and in vivo evidence. Clin Exp Pharmacol Physiol. 2017;44:235–243.
  • Kansal SK, Kundu P, Sood S, et al. Photocatalytic degradation of the antibiotic levofloxacin using highly crystalline TiO2 nanoparticles. New J Chem. 2014;38:3220–3226.
  • Karthik K, Dhanuskodi S, Gobinath C, et al. Nanostructured CdO-NiO composite for multifunctional applications. J Phys Chem Solids. 2018;112:106–118.
  • Abdus Subhan MD, Ahamed T, Uddin N, et al. Synthesis, characterization, PL properties, photocatalytic and antibacterial activities of nano multi-metal oxide NiO⋅ CeO2⋅ ZnO. Spectrochimic Acta Part A Mol Biomol Spectrosc. 2015;136:824–831.
  • Subhan MA, Uddin N, Sarker P, et al. Synthesis, characterization, low temperature solid state PL and photocatalytic activities of Ag2O· CeO2· ZnO nanocomposite. Spectrochimic Acta Part A Mol Biomol Spectrosc. 2015;151:56–63.
  • Karthik K, Nikolova MP, Anukorn Phuruangrat S, et al. Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Mater Res Innovations. 2019. DOI:10.1080/14328917.2019.1634404.
  • Aswini R, Murugesan S, Kannan K. Bio-engineered TiO2 nanoparticles using Ledebouria revoluta extract: larvicidal, histopathological, antibacterial and anticancer activity. Int J Environ Anal Chem. 2020. DOI:10.1080/03067319.2020.1718668
  • Kannan K, Radhika D, Nikolova MP, et al. Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities. Inorg Chem Commun. 2020;113:107755.
  • Kannan K, Sivasubramanian D, Seetharaman P, et al. Structural and biological properties with enhanced photocatalytic behaviour of CdO-MgO nanocomposite by microwave-assisted method. Optik. 2020;204:164221.
  • Kannan K, Radhika D, Vijayalakshmi S, et al. Facile fabrication of CuO nanoparticles via microwave-assisted method: photocatalytic, antimicrobial and anticancer enhancing performance. Int J Environ Anal Chem. 2020. DOI:10.1080/03067319.2020.1733543.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.