Publication Cover
Materials Technology
Advanced Performance Materials
Volume 36, 2021 - Issue 10
1,121
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Construction of novel ternary Au/LaFeO3/Cu2O composite photocatalysts for RhB degradation via photo-Fenton catalysis

, , , &
Pages 603-615 | Received 15 Mar 2020, Accepted 24 May 2020, Published online: 22 Jun 2020

References

  • Gao HJ, Zhao XX, Zhang HM, et al. Construction of 2D/0D/2D face-to-face contact g-C3N4@Au@Bi4Ti3O12 heterojunction photocatalysts for degradation of rhodamine B. J Electron Mater.2020; https://doi.org/10.1007/s11664-020-08243-2. Available from: https://www.researchsquare.com/article/rs-15298/v1
  • Xia YM, He ZM, Su JB, et al. One-step construction of novel PbBiO2 Br/ZnO heterojunction composites with enhanced photocatalytic activity. Phys Status Solidi A. 2019;216:1900406.
  • Wang S, Chen C, Li Y, et al. Synergistic effects of optical and photoluminescence properties, charge transfer, and photocatalytic activity in MgAl2O4: Ce and Mn-Co doped MgAl2O4: Ce phosphors. J Electron Mater. 2019;48:6675–6685.
  • Berberidou C, Kitsiou V, Lambropoulou DA, et al. Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands. J Environ Manage. 2017;195:133–139.
  • Kobasa M, Kondratyeva IV, Kropelnytska Y. Sensitizing of TiO2 with a merocyanine dye in the photocatalytic reduction of methylene blue. Funct Mater Lett. 2018;11:1850017.
  • Zhao C, Jia H, Jin W, et al. TiO2 nanoparticles and CQDs co-decorated mesoporous g-C3N4 and their photocatalytic properties for gaseous benzene degradation. Funct Mater Lett. 2019;12:1950086.
  • Yang J, Chu H, Zhu M, et al. Preparation and study on the photocatalytic mechanism of ZnFe2O4/Ag3PO4 composite photocatalysts. Mater Technol. 2019;33:262–270.
  • Xian T, Sun XF, Di LJ, et al. Carbon quantum dots (CQDs) decorated Bi2O3-x hybrid photocatalysts with promising NIR-light-driven photodegradation activity for AO7. Catalysts. 2019;9:1031.
  • Wang SF, Gao HJ, Wei Y, et al. Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N-O and C-O functional groups decorating spinel type magnesium aluminate. CrystEngComm. 2019;21:263–277.
  • Cai C, Han SB, Liu W, et al. Tuning catalytic performance by controlling reconstruction process in operando condition. Appl Catal B-Environ. 2020;260:118103.
  • Wang YP, Yang H, Sun XF, et al. Preparation and photocatalytic application of ternary n-BaTiO3/Ag/p-AgBr heterostructured photocatalysts for dye degradation. Mater Res Bull. 2020;124:110754.
  • Huan H, Jile H, Tang Y, et al. Fabrication of ZnO@Ag@Ag3PO4 ternary heterojunction: superhydrophilic properties, antireflection and photocatalytic properties. Micromachines. 2020;11:309.
  • Xia YM, He ZM, Su JB, et al. Sustainable solar-light -driven SrTiO3/PbBiO2Br nanocomposites with enhanced photocatalytic activity. J Electron Mater. 2020;49:3259–3268.
  • Ahmadi M, Motlagh HR, Jaafarzadeh N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J Environ Manage. 2017;186:55–63.
  • Yan YX, Yang H, Yi Z, et al. Design of ternary CaTiO3/g-C3N4/AgBr Z-scheme heterostructured photocatalysts and their application for dye photodegradation. Solid State Sci. 2020;100:106102.
  • Cai C, Mi Y, Han SB, et al. Engineering ordered dendrite-like nickel selenide as electrocatalyst. Electrochim Acta. 2019;295:92–98.
  • He ZM, Xia YM, Su JB, et al. Fabrication of magnetically separable NiFe2O4/Bi24O31Br10 nanocomposites and excellent photocatalytic performance under visible light irradiation. Opt Mater. 2019;88:195–203.
  • Yi Z, Li X, Wu H, et al. Fabrication of ZnO@Ag3PO4 core-shell nanocomposite arrays as photoanodes and their photoelectric properties. Nanomaterials. 2019;9:1254.
  • Duan QQ, Jia JY, Hong X, et al. Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. Sol Energy. 2020;201:555–560.
  • Di LJ, Yang H, Xian T, et al. Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic activity for the dye degradation. Micromachines. 2018;9:613.
  • Wang YP, Jiang FC, Chen JF, et al. In situ construction of CNT/CuS hybrids and their application in photodegradation for removing organic dyes. Nanomaterials. 2020;10:178.
  • Gao HJ, Zheng CX, Yang H, et al. Construction of a CQDs/Ag3PO4/BiPO4 heterostructure photocatalyst with enhanced photocatalytic degradation of rhodamine B under simulated solar irradiation. Micromachines. 2019;10:557.
  • Xian T, Di LJ, Sun XF, et al. Photo-Fenton degradation of AO7 and photocatalytic reduction of Cr(VI) over CQD-decorated BiFeO3 nanoparticles under visible and NIR light irradiation. Nanoscale Res Lett. 2019;14:397.
  • Sharma K, Maiti K, Kim NH, et al. Green synthesis of glucose-reduced graphene oxide supported Ag-Cu2O nanocomposites for the enhanced visible-light photocatalytic activity. Compos Part B-Eng. 2018;138:35–44.
  • Yan YX, Yang H, Yi Z, et al. Evolution of Bi nanowires from BiOBr nanoplates through a NaBH4 reduction method with enhanced photodegradation performance. Environ Eng Sci. 2020;37:64–77.
  • Li JK, Chen ZQ, Yang H, et al. Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using Au nanocubes. Nanomaterials. 2020;10:257.
  • Qin F, Chen ZQ, Chen XF, et al. A tunable triple-band near-infrared metamaterial absorber based on Au nano-cuboids array. Nanomaterials. 2020;10:207.
  • Li JK, Chen XF, Yi Z, et al. Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays. Mater Today Energy. 2020;16:100390.
  • Chen J, Wang XX, Tang F, et al. Substrates for surface-enhanced Raman spectroscopy based on TiN plasmonic antennas and waveguide platforms. Results Phys. 2020;16:102867.
  • Wang XX, Zhu JK, Tong H, et al. A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with an SiO2 spacer. Chin Phys B. 2019;28:044201.
  • Tong H, Xu YQ, Su YW, et al. Theoretical study for fabricating elliptical subwavelength nanohole arrays by higher-order waveguide-mode interference. Results Phys. 2019;14:102460.
  • Han SB, Zhu YM, Cai C, et al. Failure mechanism of Au@Co9S8 yolk-shell anode in Li-ion batteries unveiled by in-situ transmission electron microscopy. Appl Phys Lett. 2019;114:113901.
  • Zhao FA, Xiao HY, Bai XM, et al. Effects of Ag doping on the electronic and optical properties of CdSe quantum dots. Phys Chem Chem Phys. 2019;21:16108–16119.
  • Qin F, Chen XF, Yi Z, et al. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol Energ Mat Sol C. 2020;211:110535.
  • Wang XX, Pang ZY, Yang H, et al. Theoretical study of subwavelength circular grating fabrication based on continuously exposed surface plasmon interference lithography. Results Phys. 2019;14:102446.
  • Zhao XX, Yang H, Cui ZM, et al. Synergistically enhanced photocatalytic performance of Bi4Ti3O12 nanosheets by Au and Ag nanoparticles. J Mater Sci. 2019;30:13785–13796.
  • Hsu YC, Chang SH, Chung WC, et al. Photocatalytic removal of trichloroethylene from water with LaFeO3. Environ Sci Pollut Res. 2019;26:26276–26285.
  • Ismael M, Wark M. Perovskite-type LaFeO3: photoelectrochemical properties and photocatalytic degradation of organic pollutants under visible light irradiation. Catalysts. 2019;9:342.
  • Huang WC, Lyu LM, Yang YC, et al. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J Am Chem Soc. 2012;134:1261–1267.
  • Plascencia-Hernandez F, Luna AL, Colbeau-Justin C, et al. Cu2O cubic and polyhedral structures versus commercial powder: shape effect on photocatalytic activity under visible light. J Saudi Chem Soc. 2019;23:1016–1023.
  • Karthikeyan S, Kumar S, Durndell LJ, et al. Size-dependent visible light photocatalytic performance of Cu2O nanocubes. ChemCatChem. 2018;10:3554–3563.
  • Yi Z, Zeng Y, Wu H, et al. Synthesis, surface properties, crystal structure and dye-sensitized solar cell performance of TiO2 nanotube arrays anodized under different parameters. Results Phys. 2019;15:102609.
  • Wu H, Jile HG, Chen ZQ, et al. Fabrication of ZnO@MoS2 nanocomposite heterojunction arrays and their photoelectric properties. Micromachines. 2020;11:189.
  • Rusevova K, Koferstein R, Rosell M, et al. LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. Chem Eng J. 2014;239:322–331.
  • Palas B, Ersoz G, Atalay S. Investigation of the kinetics of the micropollutant removal by using environmentally-friendly wastewater treatment methods: fenton like oxidation of Methylene Blue in the presence of LaFeO3 perovskite type of catalysts. J Fac Eng Archit Gaz. 2017;32:181–1191.
  • Kang L, Zhou M, Zhou HJ, et al. Controlled synthesis of Cu2O microcrystals in membrane dispersion reactor and comparative activity in heterogeneous Fenton application. Powder Technol. 2019;343:847–854.
  • Ye YC, Yang H, Zhang HM, et al. A promising Ag2CrO4/LaFeO3 heterojunction photocatalyst applied to photo-Fenton degradation of RhB. Environ Technol. 2020;41:1486–1503.
  • Phan TTN, Nikoloski AN, Bahri PA, et al. Enhanced removal of organic using LaFeO3-integrated modified natural zeolites via heterogeneous visible light photo-Fenton degradation. J Environ Manage. 2019;233:471–480.
  • Gao XM, Shang YY, Liu LB, et al. A plasmonic Z-scheme three-component photocatalyst g-C3N4/Ag/LaFeO3 with enhanced visible-light photocatalytic activities. Opt Mater. 2019;88:229–237.
  • Ponnaiah SK, Periakaruppan P, Arumuganathan T, et al. Effectual light-harvesting and electron-hole separation for enhanced photocatalytic decontamination of endocrine disruptor using Cu2O/BiOI nanocomposite. J Photochem Photobiol A. 2019;380:111860.
  • Xia YM, He ZM, Su JB, et al. Construction of novel Cu2O/PbBiO2Br composites with enhanced photocatalytic activity. J Mater Sci. 2019;30:9843–9854.
  • Cho SW, Nam DH, Kim LH, et al. Preparation of BaTiO3/Cu2O and BaTiO3/Cu2O/Au complexes: their photocatalytic and antipathogenic effect. J Nanosci Nanotechnol. 2016;16:5133–5137.
  • Guan ST, Yang H, Sun XF, et al. Preparation and promising application of novel LaFeO3/BiOBr heterojunction photocatalysts for photocatalytic and photo-Fenton removal of dyes. Opt Mater. 2020;100:109644.
  • Yan YX, Yang H, Yi Z, et al. NaBH4-reduction induced evolution of Bi nanoparticles from BiOCl nanoplates and construction of promising Bi@BiOCl hybrid photocatalysts. Catalysts. 2019;9:795.
  • Wang YY, Chen ZQ, Xu DY, et al. Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays. Results Phys. 2020;16:102951.
  • Pang ZY, Tong H, Wu XX, et al. Theoretical study of multiexposure zeroth-order waveguide mode interference lithography. Opt Quantum Electron. 2018;50:335.
  • Pu J, Li GP, Jiang QQ, et al. Deformed dispersion relation constraint with hydrogen atom 1S-2S transition. Chin Phys C. 2020;44:014001.
  • Wang S, Gao H, Chen C, et al. Effect of phase transition on optical and photoluminescence properties of nano-MgWO4 phosphor prepared by a gamma-ray irradiation assisted polyacrylamide gel method. J Mater Sci. 2019;30:15744–15753.
  • Yan YX, Yang H, Yi Z, et al. Direct Z-scheme CaTiO3@BiOBr composite photocatalysts with enhanced photodegradation of dyes. Environ Sci Pollut Res. 2019;26:29020–29031.
  • Lakhera SK, Watts A, Hafeez HY, et al. Interparticle double charge transfer mechanism of heterojunction α-Fe2O3/Cu2O mixed oxide catalysts and its visible lightphotocatalytic activity. CatalToday. 2018;300:58–70.
  • Dehghani Dastjerdi O, Shokrollahi H, Yang H. The enhancement of the Ce-solubility limit and saturation magnetization in the Ce025BixPryY275-x-yFe5O12 garnet synthesized by the conventional ceramic method. Ceram Int. 2020;46:2709–2723.
  • Wang S, Gao H, Wang Y, et al. Effect of the sintering process on the structure, colorimetric, optical and photoluminescence properties of SrWO4 phosphor powders. J Electron Mater. 2020. DOI:10.1007/s11664-020-07941-1
  • Golkari M, Shokrollahi H, Yang H. The influence of Eu cations on improving the magnetic properties and promoting the Ce solubility in the Eu, Ce-substituted garnet synthesized by the solid state route. Ceram Int. 2020;46:8553–8560.
  • Wang S, Gao H, Chen C, et al. Irradiation assisted polyacrylamide gel route for the synthesize of the Mg1–xCoxAl2O4 nano-photocatalysts and its optical and photocatalytic performances. J Sol-Gel Sci Technol. 2019;92:186–199.
  • Utara S, Hunpratub S. Ultrasonic assisted synthesis of BaTiO3 nanoparticles at 25 °C and atmospheric pressure. Ultrason Sonochem. 2018;41:441–448.
  • Wang S, Gao H, Sun G, et al. Structure characterization, optical and photoluminescence properties of scheelite-type CaWO4 nanophosphors: effects of calcination temperature and carbon skeleton. Opt Mater. 2020;99:109562.
  • Wang SY, Yang H, Yi Z, et al. Enhanced photocatalytic performance by hybridization of Bi2WO6 nanoparticles with honeycomb-like porous carbon skeleton. J Environ Manage. 2019;248:109341.
  • Zheng CX, Yang H, Cui ZM, et al. A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance. Nanoscale Res Lett. 2017;12:608.
  • Andersen T, Haugen HK, Hotop H. Binding energies in atomic negative ions: III. J Phys Chem Ref Data. 1999;28:1511–1533.
  • Yan YX, Yang H, Yi Z, et al. Construction of Ag2S@CaTiO3 heterojunction photocatalysts for enhanced photocatalytic degradation of dyes. Desalin Water Treat. 2019;170:349–360.
  • Eshaq G, ElMetwally AE. Bmim[OAc]-Cu2O/g-C3N4 as a multi-function catalyst for sonophotocatalytic degradation of methylene blue. Ultrason Sonochem. 2019;53:99–109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.