Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 2
303
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Beetle wing inspired fabrication of nanojunction based biomimetic SERS substrates for sensitive detection of analytes

, &
Pages 112-123 | Received 06 Jan 2020, Accepted 23 Aug 2020, Published online: 09 Sep 2020

References

  • Li D-W, Zhai W-L, Li Y-T, et al. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Mikrochim Acta. 2014;181(1–2):23–43.
  • Jones RR, Hooper DC, Zhang L, et al. Raman techniques: fundamentals and frontiers. Nanoscale Res Lett. 2019;14(1):1–34.
  • Qiu S, Xu Y, Huang L, et al. Non-invasive detection of nasopharyngeal carcinoma using saliva surface-enhanced Raman spectroscopy. Oncol Lett. 2016;11(1):884–890.
  • Chamuah N, Hazarika A, Hatiboruah D, et al. SERS on paper: an extremely low cost technique to measure Raman signal. J Phys D Appl Phys. 2017;50(48):485601.
  • Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26(2):163–166.
  • Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electroche. 1977;84(1):1–20.
  • Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc. 1977;99(15):5215–5217.
  • Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C. 2007;111(10):3806–3819.
  • Stiles PL, Dieringer JA, Shah NC, et al. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem. 2008;1:601–626.
  • Ouyang L, Ren W, Zhu L, et al. Prosperity to challenges: recent approaches in SERS substrate fabrication. Rev Anal Chem. 2017;36:1.
  • Pal P, Bonyár A, Veres M, et al. A generalized exponential relationship between the surface-enhanced Raman scattering (SERS) efficiency of gold/silver nanoisland arrangements and their non-dimensional interparticle distance/particle diameter ratio. Sens Actuators A. 2020; 314:112225.
  • Loiseau A, Asila V, Boitel-Aullen G, et al. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors (Basel). 2019;9(2):78.
  • Banholzer MJ, Millstone JE, Qin L, et al. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev. 2008;37(5):885–897.
  • Wang Y, Yan B, Chen L. SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev. 2012;113(3):1391–1428.
  • Schlücker S. SERS microscopy: nanoparticle probes and biomedical applications. Chem Phys Chem. 2009;10(9‐10):1344–1354.
  • Mosier-Boss PA. Review of SERS substrates for chemical sensing. Nanomaterials. 2017;7(6):142.
  • Sharma B, Frontiera RR, Henry A-I, et al. SERS: materials, applications, and the future. Mater Today. 2012;15(1–2):16–25.
  • Zhu W, Banaee MG, Wang D, et al. Lithographically fabricated optical antennas with gaps well below 10 nm. Small. 2011;7(13):1761–1766.
  • Xie X, Pu H, Sun D-W. Recent advances in nanofabrication techniques for SERS substrates and their applications in food safety analysis. Crit Rev Food Sci Nutr. 2017;58:1–14.
  • Huang C-Y, Chien C-H. Facile fabrication of micro/nano hierarchical SERS sensor via anisotropic etching and electrochemical treatment for malachite green detection. Appl Sci. 2019;9(23):5237.
  • Acikgoz C, Hempenius MA, Huskens J, et al. Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur Polym J. 2011;47(11):2033–2052.
  • Sharma V, Balaji R, Walia R, et al. Au nanoparticle aggregates assembled on 3D mirror-like configuration using canna generalis leaves for SERS applications. Colloid Interface Sci Commun. 2017;18:9–12.
  • Sharma V, Kumar S, Jaiswal A, et al. Gold deposited plant leaves for SERS: role of surface morphology, wettability and deposition technique in determining the enhancement factor and sensitivity of detection. ChemistrySelect. 2017;2(1):165–174.
  • Shi GC, Wang ML, Zhu YY, et al. Dragonfly wing decorated by gold nanoislands as flexible and stable substrates for surface-enhanced Raman scattering (SERS). Sci Rep. 2018;8(1):6916.
  • Mu Z, Zhao X, Xie Z, et al. In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS). J Mat Chem B. 2013;1(11):1607–1613.
  • Chou S-Y, Yu C. C, Yen Y-T, et al. Romantic story or Raman scattering? Rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced Raman scattering. Anal Chem. 2015;87(12):6017–6024.
  • Sharma V, Krishnan V. Fabrication of highly sensitive biomimetic SERS substrates for detection of herbicides in trace concentration. Sens Actuators B Chem. 2018;262:710–719.
  • Phansawan B, Prapamontol T, Thavornyutikarn P, et al. A sensitive method for determination of carbendazim residue in vegetable samples using HPLC-UV and its application in health risk assessment. Chiang Mai J Sci. 2015;42(3):681–690.
  • Dong J, Carpinone PL, Pyrgiotakis G, et al. Synthesis of precision gold nanoparticles using Turkevich method. KONA Powder Part J. 2020;37:224–232.
  • Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241(105):20.
  • Elbaz A, He Z, Gao B, et al. Recent biomedical applications of bio-sourced materials. Bio-Des Manuf. 2018; 1–19.
  • Diu T, Faruqui N, Sjöström T, et al. Cicada-inspired cell-instructive nanopatterned arrays. Sci Rep. 2014;4:7122.
  • Garrett NL, Sekine R, Dixon MW, et al. Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection. Phys Chem Chem Phys. 2015;17(33):21164–21168.
  • Zeng X, Qian L, Yuan X, et al. Inspired by stenocara beetles: from water collection to high-efficiency water-in-oil emulsion separation. ACS Nano. 2016;11(1):760–769.
  • Surapaneni H, Attili S. Polyvinyl siloxanes in dentistry: an overview. Trends Biomat Artif Organs. 2013;27:3.
  • Moy P, Karasz F. The interactions of water with epoxy resins. Water in Polym. 1980;27:505–513.
  • Cassie A, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–551.
  • McHale G, Aqil S, Shirtcliffe N, et al. Analysis of droplet evaporation on a superhydrophobic surface. Langmuir. 2005;21(24):11053–11060.
  • Areizaga-Martinez HI, Kravchenko I, Lavrik NV, et al. Performance characteristics of bio-inspired metal nanostructures as surface-enhanced Raman scattered (SERS) substrates. Appl Spectrosc. 2016;70(9):1432–1445.
  • Wang AX, Kong X. Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering. Materials. 2015;8(6):3024–3052.
  • Tu K, Chung C. Enhancement of surface raman spectroscopy performance by silver nanoparticles on resin nanorods arrays from anodic aluminum oxide template. J Electrochem Soc. 2017;164(5):B3081–B3086.
  • Del Pilar Rodríguez-Torres M, Díaz-Torres L, Romero-Servin S. Heparin assisted photochemical synthesis of gold nanoparticles and their performance as SERS substrates. Int J Mol Sci. 2014;15(10):19239–19252.
  • Gonçalves MR, Enderle F, Marti O. Surface-enhanced Raman spectroscopy of dye and thiol molecules adsorbed on triangular silver nanostructures: a study of near-field enhancement, localization of hot-spots, and passivation of adsorbed carbonaceous species. J Nanotechnol. 2012;2012. https://www.hindawi.com/journals/jnt/2012/173273/.
  • Li C, Huang Y, Lai K, et al. Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control. 2016;65:99–105.
  • Sharma V, Sinha N, Dutt S, et al. Tuning the surface enhanced Raman scattering and catalytic activities of gold nanorods by controlled coating of platinum. J Colloid Interface Sci. 2016;463:180–187.
  • Kundu S. A new route for the formation of Au nanowires and application of shape-selective Au nanoparticles in SERS studies. J Mater Chem C. 2013;1(4):831–842.
  • Ma C-H, Zhang J, Hong Y-C, et al. Determination of carbendazim in tea using surface enhanced Raman spectroscopy. Chin Chem Lett. 2015;26(12):1455–1459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.