Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 8
312
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Greener synthesis of cerium oxide nanoemulsion using pollen grains of Brassica napus and evaluation of its antitumour and cytotoxicity properties.

, , , &
Pages 525-532 | Received 21 Sep 2020, Accepted 05 Dec 2020, Published online: 30 Dec 2020

References

  • Hamidi A, Yazdi, MET, Amiri, MS, et al. Biological synthesis of silver nanoparticles in Tribulus terrestris L. extract and evaluation of their photocatalyst, antibacterial, and cytotoxicity effects. Res Chem Intermed. 2019;45(5):2915–2925.
  • Yazdi MET, Amiri, MS, Hosseini, HA, Oskuee, RK, et al. Plant-based synthesis of silver nanoparticles in Handelia trichophylla and their biological activities. Bull Mater Sci. 2019;42(4):155.
  • Yazdi MET, Khara J, Housaindokht MR, et al. Role of Ribes khorassanicum in the biosynthesis of AgNPs and their antibacterial properties. IET Nanobiotechnol. 2018;13(2):189–192.
  • Sivasankarapillai VS, Pillai AM, Rahdar A, et al. On facing the SARS-CoV-2 (COVID-19) with combination of nanomaterials and medicine: possible strategies and first challenges. Nanomaterials. 2020;10(5):852.
  • Shamasi Z, Es-haghi A, Taghavizadeh Yazdi ME, et al. Role of Rubia tinctorum in the synthesis of zinc oxide nanoparticles and apoptosis induction in breast cancer cell line. Nanomed J. 2020;8(1).
  • Yazdi MET, Darroudi M, Amiri MS, et al. Anticancer, antimicrobial, and dye degradation activity of biosynthesized silver nanoparticle using Artemisia kopetdaghensis. Micro Nano Lett. 2020;15:1046-1050.
  • Yazdi MET, Modarres M, Amiri MS, et al. Phyto-synthesis of silver nanoparticles using aerial extract of Salvia leriifolia Benth and evaluation of their antibacterial and photo-catalytic properties. Res Chem Intermed. 2019;45(3):1105–1116.
  • Yazdi MET, Amiri MS, Akbari S, et al. Green synthesis of silver nanoparticles using helichrysum graveolens for biomedical applications and wastewater treatment. BioNanoScience. 2020;10:1121-1127.
  • Sharifan H, Moore J, Ma X. Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Ecotoxicol Environ Saf. 2020;191:110177.
  • Rahdar A., Aliahmad M., Samani M., HaidariMajd M., Susan A.B.H. Synthesis and characterization of highly efficacious Fe-doped ceria nanoparticles for cytotoxic and antifungal activity. Ceram Int. 2019;45(6):7950–7955.
  • Zhang J-W, Zhang X. Electrode material fabricated by loading cerium oxide nanoparticles on reduced graphene oxide and its application in electrochemical sensor for tryptophan. J Alloys Compd. 2020;842:155934.
  • Golieskardi M., Satgunam M., Ragurajan D., Hoque M.E., Ng A.M.H., Shanmuganantha L. Advanced 3Y-TZP bioceramic doped with Al2O3 and CeO2 potentially for biomedical implant applications. Mater Technol. 2019;34(8):480–489.
  • Shan Y., Liu Y., Li Y., Yang W. A review on application of cerium-based oxides in gaseous pollutant purification. Sep Purif Technol. 2020;117181.
  • Abbas Q., Liu G., yousaf B., Ali M.U., Ullah H., Munir M.A.M., Ahmed R., Rehman A. Biochar-assisted transformation of engineered-cerium oxide nanoparticles: effect on wheat growth, photosynthetic traits and cerium accumulation. Ecotoxicol Environ Saf. 2020;187:109845.
  • Adebayo OA, Akinloye O, Adaramoye OA. Cerium oxide nanoparticles attenuate oxidative stress and inflammation in the liver of Diethylnitrosamine-treated mice. Biol Trace Elem Res. 2020;193(1):214–225.
  • Kalantari A., Mostafavi B., Saleh B., Soltantabar P., Webster T.J. Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications. Eur Polym J. 2020;109853.
  • Dulany K., Hepburn K., Goins A., Allen J.B In vitro and in vivo biocompatibility assessment of free radical scavenging nanocomposite scaffolds for bone tissue regeneration. J Biomed Mater Res A. 2020;108(2):301–315.
  • Morlando A., Borras M.C., Rehman Y., Bakand S., Barker P., Sluyter R., Konstantinov K. Development of CeO 2 nanodot encrusted TiO 2 nanoparticles with reduced photocatalytic activity and increased biocompatibility towards a human keratinocyte cell line. J Mat Chem B. 2020;8(18):4016–4028.
  • Dhall A, Self W. cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants. 2018;7(8):97.
  • Darroudi M, Yazdi MET, Amiri MS. Plant-mediated biosynthesis of nanoparticles, in 21st century nanoscience–A handbook. CRC Press; 2020. p. 1-1-1-18.
  • Javadi F., Yazdi M.E.T., Baghani M., Es-Haghi A. Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Mater Res Express. 2019;6(6):065408.
  • Aseyd Nezhad S, Es‐haghi A, Tabrizi MH. Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities. Appl Organomet Chem. 2020;34(2):e5314.
  • Zahedifar M., Es-haghi A., Zhiani R., Sadeghzadeh S.M. Synthesis of benzimidazolones by immobilized gold nanoparticles on chitosan extracted from shrimp shells supported on fibrous phosphosilicate. RSC Adv. 2019;9(12):6494–6501.
  • Zhang H., He X., Zhang Z., Zhang P., Li Y., Ma Y., Kuang Y., Zhao Y., Chai Z. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol. 2011;45(8):3725–3730.
  • Hirano M., Fukuda Y., Iwata H., Hotta Y., Inagaki M. Preparation and spherical agglomeration of crystalline cerium (IV) oxide nanoparticles by thermal hydrolysis. J Am Ceram Soc. 2000;83(5):1287–1289.
  • Zhao J., Guo X., Zhang X., He Q., Yaao Y., Feng X., Dan Z., Lu L., Zhang Q. Preparation and photocatalytic properties of Bi2InNbO7 nanorods obtained by the sol-gel method. Mater Technol. 2017;32(11):668–674.
  • Kannan S, Sundrarajan M. A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int J Nanosci. 2014;13(3):1450018.
  • Munusamy S., Bhakyaraj K., Vijayalakshmi L., Stephen A., Narayanan V. Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties. Int J Innovative Res Sci Eng. 2014;2(1):318–323.
  • Sheth T, et al. Multiple nanoemulsions. Nat Rev Mater. 2020;5:1–15.
  • Yin D.Z., Du X., Zhang Q.Y., Liu H. Covalently bonded polystyrene/SiO2 microspheres via emulsion polymerisation stabilised solely by surface active Pickering stabiliser. Mater Technol. 2013;28(3):138–144.
  • Helgeson ME. Colloidal behavior of nanoemulsions: interactions, structure, and rheology. Curr Opin Colloid Interface Sci. 2016;25:39–50.
  • Jaiswal M, Dudhe R, Sharma P. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123–127.
  • Donalisio M., Leone F., Civra F., Spagnolo F., Ozer O., Lembo D., Cavalli D. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections. Pharmaceutics. 2018;10(2):46.
  • Aziz WJ, Abid MA, Hussein EH. Biosynthesis of CuO nanoparticles and synergistic antibacterial activity using mint leaf extract. Mater Technol. 2020;35(8):447–451.
  • Taghavizadeh Yazdi M.E., Hamidi A., Amiri M.S., Kazemi Oskuee R., Hosseini H.A., Hashemzadeh A., Darroudi M. Eco-friendly and plant-based synthesis of silver nanoparticles using Allium giganteum and investigation of its bactericidal, cytotoxicity, and photocatalytic effects. Mater Technol. 2019;34(8):490–497.
  • Rahnama M., Johnson R.D., Voisey C.R., Simpson W.R., Fleetwood D.J. The global regulatory protein VelA Is required for symbiosis between the endophytic fungus Epichloë festucae and Lolium perenne. Mol Plant-Microbe Interact. 2018;31(6):591–604.
  • Rahnama M., Maclean P., Fleetwood DJ. The LaeA orthologue in Epichloë festucae is required for symbiotic interaction with Lolium perenne. Fungal Genet Biol. 2019;129:74–85.
  • Yazdi M.E.T., housaindokht M.R., Sadeghnia H.R., Bahabadi S.E., Amiri M.S., Darroudi M. Assessment of phytochemical components and antioxidant activity of Rheum turkestanicum Janisch. Stud Med Sci. 2020;31(2):75–81.
  • Phoka S., Laokul P., Swatsitang E., Promarak V., Seraphin S., Maensiri S. Synthesis, structural and optical properties of CeO 2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. Mater Chem Phys. 2009;115(1):423–428.
  • Mousavi-Kamazani M, Salavati-Niasari M, Emadi H. Synthesis and characterization of CuInS2 nanostructure by ultrasonic-assisted method and different precursors. Mater Res Bull. 2012;47(12):3983–3990.
  • Panahi-Kalamuei M., Alizadeh S., Mousavi-kamazani M., Salavati-Niasari M. Synthesis and characterization of CeO2 nanoparticles via hydrothermal route. J Ind Eng Chem. 2015;21:1301–1305.
  • Patil J., Rajput R., Nemade R., Naik J. Preparation and characterization of artemether loaded solid lipid nanoparticles: a 32 factorial design approach. Mater Technol. 2020;35(11–12):719–726.
  • Baghani M, Es-Haghi A. Characterization of silver nanoparticles biosynthesized using Amaranthus cruentus. Bioinspired Biomimetic Nanobiomater. 2019;9:1–8.
  • Ribatti D. The chick embryo chorioallantoic membrane as an in vivo assay to study antiangiogenesis. Pharmaceuticals. 2010;3(3):482–513.
  • Ribatti D. The chick embryo chorioallantoic membrane (CAM) assay. Reprod Toxicol. 2017;70:97–101.
  • Mousavi S.H., Davari A.S., Iranshahi M., Sabouri-Rad S., Tayarani Najaran Z. Comparative analysis of the cytotoxic effect of 7-prenyloxycoumarin compounds and herniarin on MCF-7 cell line. Avicenna J Phytomed. 2015;5(6):520.
  • Rahimi V.B., Mousavi S.H., Haghighi S., Soheili-Far S., Askari V.R. Cytotoxicity and apoptogenic properties of the standardized extract of Portulaca oleracea on glioblastoma multiforme cancer cell line (U-87): a mechanistic study. Excli J. 2019;18:165.
  • Tavakkol-Afshari J, Brook A, Mousavi SH. Study of cytotoxic and apoptogenic properties of saffron extract in human cancer cell lines. Food Chem Toxicol. 2008;46(11):3443–3447.
  • Zamiri-Akhlaghi A., Rakhshandeh H., Tayarani-Najaran Z., Mousavi S.H. Study of cytotoxic properties of Rosa damascena extract in human cervix carcinoma cell line. Avicenna J Phytomed. 2011;1(2):74–77.
  • Nune K, Misra R. Biological activity of nanostructured metallic materials for biomedical applications. Mater Technol. 2016;31(13):772–781.
  • Nune K.C., Somani M.C., Spencer C.T., Misra R.D.K. Cellular response of Staphylococcus aureus to nanostructured metallic biomedical devices: surface binding and mechanism of disruption of colonization. Mater Technol. 2017;32(1):22–31.
  • Zarei M., Karimi E., Oskoueian R., Es-haghi A. Taghavizadeh Yazdi M.E. Comparative study on the biological effects of sodium citrate-based and apigenin-based synthesized silver nanoparticles. Nutr Cancer. 2020;1–9.
  • Aljelehawy Q, Karimi N, Alavi M. Comparison of antibacterial and cytotoxic activities of phytosynthesized ZnONPs by leaves extract of Daphne mucronata at different salt sources. Mater Technol. 2020;1–13.
  • Rasouli Z., Yousefi M., Bikhof Torbati M., Samadi S., Kalateh K. Synthesis and characterization of nanoceria-based composites and in vitro evaluation of their cytotoxicity against colon cancer. Polyhedron. 2020;176:114297.
  • Datta A., Mishra S., Manna K., Saha K.D., Mukherjee S. Roy S. Pro-oxidant therapeutic activities of cerium oxide nanoparticles in colorectal carcinoma cells. ACS Omega. 2020;5(17):9714–9723.
  • Gnanasekaran K.K., Pouland T., Bunce R.A., Berlin K.D., Abuskhuna S., Bhandari D., Mashayekhi M., Zhou D.H., Benbrook D.M. Tetrahydroquinoline units in flexible heteroarotinoids (Flex-Hets) convey anti-cancer properties in A2780 ovarian cancer cells. Bioorg Med Chem. 2020;28(1):115244.
  • Sarkhosh Inanlou R., Molaparast M., Mohammadzadeh A., Shafiei-Irannejad V. Sanguinarine enhances cisplatin sensitivity via glutathione depletion in cisplatin‐resistant ovarian cancer (A2780) cells. Chem Biol Drug Des. 2020;95(2):215–223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.