Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 8
652
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Flexible and Conformal Metamaterial based Microwave Absorber for WLAN, Wi-MAX and ISM Band Applications

, , ORCID Icon, &
Pages 592-609 | Received 05 Sep 2020, Accepted 10 Dec 2020, Published online: 25 Jan 2021

References

  • Paul CR. Introduction to electromagnetic compatibility. USA: John Wiley & Sons; 2006. p. 184.
  • Knott EF, Shaeffer JF, Tuley MT. Radar cross section. 2nd ed. Raleigh, NC: SciTech Publishing Inc; 2004.
  • Munk BA. Frequency selective surfaces: theory and design [book review]. IEEE Signal Process Mag. 2002;18:94.
  • Carranza IE, Grant JP, Gough J, et al. Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: scaling to large format focal plane arrays. IEEE J Sel Top Quantum Electron. 2017;23:1–8.
  • Zhu L, Wang Y, Liu Y, et al. Design and analysis of ultra broadband nano-absorber for solar energy harvesting. Plasmonics. 2017;13:1–7.
  • Abass A, Le KQ, Alù A, et al. Dual-interface gratings for broadband absorption enhancement in thin-film solar cells. Phys Rev B. 2012;85:115449.
  • Watts CM, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photon. 2014;8:605–609.
  • Shater A, Zarifi D. Radar cross section reduction of microstrip antenna using dual-band metamaterial absorber. Appl Comput Electromagn Soc J. 2017;32:2.
  • Wang W, Wang K, Yang Z, et al. Experimental demonstration of an ultra-flexible metamaterial absorber and its application in sensing. J Phys D: Appl Phys. 2017;50:135108.
  • Le KQ, Ngo QM, Nguyen TK. Nanostructured metal–insulator–metal metamaterials for refractive index biosensing applications: design, fabrication, and characterization. IEEE J Sel Top Quantum Electron. 2016;23:388–393.
  • Bağmancı M, Karaaslan M, Ünal E, et al. Broad-band polarization-independent metamaterial absorber for solar energy harvesting applications. Physica E. 2017;90:1–6.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):207402.
  • Yang X, Zhang D, Wu S, et al. Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution. Sci Rep. 2017;7:3190.
  • Park JW, Van Tuong P, Rhee JY, et al. Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express. 2013;21:9691–9702.
  • Li L, Yang Y, Liang C. Awide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes. J Appl Phys. 2011;110:063702.
  • Viet DT, Hien NT, Tuong PV, et al. Perfect absorber metamaterials: peak, multi-peak and broadband absorption. Opt Commun. 2014;322:209–213.
  • Khuyen BX, Tung BS, Yoo YJ, et al. Miniaturization for ultrathin metamaterial perfect absorber in the VHFband. Sci Rep. 2017;7:45151.
  • Zhong YK, Fu SM, Tu MH, et al. A multimetal broadband metamaterial perfect absorber with compact dimension. IEEE Photonics J. 2016;8:1–10.
  • Sun J, Liu L, Dong G, et al. An extremely broad band metamaterial absorber based on destructive interference. Opt Express. 2011;19:21155–21162.
  • Liu P, Lan T. Wide-angle, polarization-insensitive, and broadband metamaterial absorber based on multilayered metal dielectric structures. Appl Opt. 2017;56(14):4201–4205.
  • Zhai H, Zhang B, Zhang K, et al. A stub-loaded reconfigurable broadband metamaterial absorber with wide-angle and polarization stability. J Electromagn Wave. 2017;31:447–459.
  • Kim YJ, Hwang JS, Yoo YJ, et al. Ultrathin microwave metamaterial absorber utilizing embedded resistors. J Phys D: Appl Phys. 2017;50:405110.
  • Ghosh S, Srivastava KV. Polarisation-independent tunable absorber with embedded biasing network. Electron Lett. 2017;53:1176–1178.
  • Wang B, Gong BY, Wang M, et al. Dendritic wideband metamaterial absorber based on resistance film. Appl Phys A. 2015;118:1559–1563.
  • Kim YJ, Yoo YJ, Hwang JS, et al. Ultrathin microwave absorber based on metamaterial. J Phys D: Appl Phys. 2016;49:435102.
  • Yoo YJ, Zheng HY, Kim YJ, et al. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Appl Phys Lett. 2014;105:041902.
  • Tak J, Choi J. A wearable metamaterial microwave absorber. IEEE Antennas Wirel Propag Lett. 2017;16:784–787.
  • Zhang Y, Duan J, Zhang B, et al. A flexible metamaterial absorber with four bands and two resonators. J Alloys Compd. 2017;705:262–268.
  • Huang X, Pan K, Hu Z. Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers. Sci Rep. 2016;6:38197.
  • Agarwal M, Meshram MK. X-band metamaterial absorber with dual band/broadband absorption characteristics In: 2015 IEEE MTT-S International Microwave and RF Conference (IMaRC). USA: IEEE; 2015.
  • Bhattacharyya S, Ghosh S, Chaurasiya D, et al. A broadband wide angle metamaterial absorber for defense applications. In: 2014 IEEE International Microwave and RF Conference (IMaRC). Bangalore, India: IEEE; 2014 Dec. p. 33–36.
  • Tak J, Lee Y, Choi J. Design of a metamaterial absorber for ISM applications. J Electromagn Eng Sci. 2013;13(1):1–7.
  • Chen H, Yang X, Wu S, et al. Flexible and conformable broadband metamaterial absorber with wide-angle and polarization stability for radar application. Mater Res Express. 2018;5(1):015804.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.