Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 8
166
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An insight into the mechanism of charge transfer of organic (P3HT): inorganic (CZTS) composites for hybrid photovoltaics

, &
Pages 684-694 | Received 28 May 2020, Accepted 24 Dec 2020, Published online: 11 Jan 2021

References

  • Skompska M. Hybrid conjugated polymer/semiconductor photovoltaic cells. Synth Met. 2010;160(1–2):1–15.
  • Zhou Y, Li Y, Zhong H, et al. Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1− x nanocrystals, Nanotechnology. 2006;17:4041.
  • Xu T, Qiao Q. Conjugated polymer–inorganic semiconductor hybrid solar cells. Energy Environ Sci. 2011;4(8):2700–2720.
  • Wright M, Uddin A. Organic—inorganic hybrid solar cells: A comparative review. Sol Energy Mater Sol Cells. 2012;107:87–111.
  • Li -S-S, Chen C-W. Polymer–metal-oxide hybrid solar cells. J Mater Chem A. 2013;1(36):10574–10591.
  • Gao F, Ren S, Wang J. The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy Environ Sci. 2013;6(7):2020–2040.
  • Fan X, Zhang M, Wang X, et al. Recent progress in organic–inorganic hybrid solar cells. ?J Mater Chem A. 2013;1(31):8694–8709.
  • Jayawardena KI, Rozanski LJ, Mills CA, et al. ‘Inorganics-in-Organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale. 2013;5(18):8411–8427.
  • Chaturvedi N, Swami SK, Dutta V. Electric field assisted spray deposited MoO 3 thin films as a hole transport layer for organic solar cells. Solar Energy. 2016;137:379–384.
  • Chen JD, Cui C, Li YQ, et al. Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv Mater. 2015;27(6):1035–1041.
  • Zhao W, Qian D, Zhang S, et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater. 2016;28(23):4734–4739.
  • Challa V, Nune K, Misra R. The impact of molecular weight on nanoscale supramolecular structure of semiconducting poly(3-hexylthiophene) on carbon nanotubes and photophysical properties. Mater Technol. 2016;31(8):477–481.
  • Xu X, Sun L, Shen K, et al. Organic and hybrid organic-inorganic flexible optoelectronics: recent advances and perspectives. Synth Met. 2019;256:116137.
  • Cao F, Tian W, Deng K, et al. Self-powered UV–Vis–NIR photodetector based on conjugated-polymer/CsPbBr3 nanowire array. Adv Funct Mater. 2019;29(48):1906756.
  • Xu X, Zhang G, Yu L, et al. P3HT-based polymer solar cells with 8.25% efficiency enabled by a matched molecular acceptor and smart green-solvent processing technology. Adv Mater. 2019;31(52):1906045.
  • Gurav K, Shin S, Patil U, et al. Cu2ZnSnS4 (CZTS)-based room temperature liquefied petroleum gas (LPG) sensor. Sens Actuators B Chem. 2014;190:408–413.
  • Liu C, Qiu Z, Li F, et al. From binary to multicomponent photoactive layer: A promising complementary strategy to efficient hybrid solar cells. Nano Energy. 2015;12:686–697.
  • Abid Hubeatir K, Kamil F, Al-Amiery A, et al. Polymer solar cells with enhanced power conversion efficiency using nanomaterials and laser techniques. Mater Technol. 2017;32(5):279–298.
  • Chen L, Tian W, Sun C, et al. Structural engineering of Si/TiO2/P3HT heterojunction photodetectors for a tunable response range. ACS Appl Mater Interfaces. 2019;11(3):3241–3250.
  • Wang, L., Wang, H.Y., Wei, H.T., Zhang, H., Chen, Q.D., Xu, H.L., Han, W., Yang, B. and Sun, H.B., 2014. Unraveling Charge Separation and Transport Mechanisms in Aqueous‐Processed Polymer/CdTe Nanocrystal Hybrid Solar Cells. Advanced Energy Materials, 4(9), p.1301882.
  • Dunst S, Rath T, Reichmann A, et al. A comparison of copper indium sulfide-polymer nanocomposite solar cells in inverted and regular device architecture. Synth Met. 2016;222:115–123.
  • Karimipour M, Bagheri M, Johansson EMJ, et al. Excellent growth of ZnS shell on Ag2S QDs using a photochemical-microwave irradiation approach and fabrication of their indoor QD thin film solar cells. Mater Technol. 2018;33(12):784–792.
  • Swami SK, Chaturvedi N, Kumar A, et al. Dye sensitized solar cells using the electric field assisted spray deposited kesterite (Cu2ZnSnS4) films as the counter electrodes for improved performance. Electrochim Acta. 2018;263:26–33.
  • Boshta M, Binetti S, Le Donne A, et al. A chemical deposition process for low-cost CZTS solar cell on flexible substrates. Mater Technol. 2017;32(4):251–255.
  • Gu Y, Shen H, Ye C, et al. All-solution-processed Cu2ZnSnS4 solar cells with self-depleted Na2S back contact modification layer. Adv Funct Mater. 2018;28(14):1703369.
  • Engberg S, Agersted K, Crovetto A, et al. Investigation of Cu 2 ZnSnS 4 nanoparticles for thin-film solar cell applications. Thin Solid Films. 2017;628:163–169.
  • Suryawanshi M, Agawane G, Bhosale S, et al. CZTS based thin film solar cells: a status review. Mater Technol. 2013;28(1–2):98–109.
  • Chen S, Tao J, Tao H, et al. Fabrication of low cost kesterite Cu2ZnSnS4(CZTS) thin films as counter-electrode for dye sensitised solar cells (DSSCs). Mater Technol. 2015;30(5):306–312.
  • Todorov TK, Reuter KB, Mitzi DB. Photovoltaic devices: high-efficiency solar cell with earth-abundant liquid-processed absorber (Adv. Mater. 20/2010). Adv Mater. 2010;22(20). DOI:https://doi.org/10.1002/adma.201090073
  • Tanaka K, Oonuki M, Moritake N, et al. Cu2ZnSnS4Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol Energy Mater Sol Cells. 2009;93(5):583–587.
  • Chan C, Lam H, Surya C. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Sol Energy Mater Sol Cells. 2010;94(2):207–211.
  • Zhao Q, Hao R, Liu S, et al. Fabrication and characterization of Cu 2 ZnSnS 4 thin films by sputtering a single target at different temperature. Phys B Condens Matter. 2017;523:62–66.
  • Guo Q, Ford GM, Yang W-C, et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc. 2010;132(49):17384–17386.
  • Steinhagen C, Panthani MG, Akhavan V, et al. Synthesis of Cu 2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J Am Chem Soc. 2009;131(35):12554–12555.
  • Jain S, Chawla P, Sharma SN, et al. Efficient colloidal route to pure phase kesterite Cu 2 ZnSnS 4 (CZTS) nanocrystals with controlled shape and structure. Superlattices Microstruct. 2018;119:59–71.
  • Wang W, Shen H, He X, et al. Effects of sulfur sources on properties of Cu2ZnSnS4 nanoparticles. J Nanopart Res. 2014;16(6):2437.
  • Chawla P, Singh S, Sharma SN. An insight into the mechanism of charge-transfer of hybrid polymer: ternary/quaternary chalcopyrite colloidal nanocrystals. Beilstein J Nanotechnol. 2014;5:1235.
  • S. Jain, A. Singh, G. Gupta, N. Vijayan, S.N. Sharma, Precursor ratio optimizations for the synthesis of colloidal CZTS nanoparticles for photocatalytic degradation of malachite green, Journal of Physics and Chemistry of Solids, 122 (2018) 8–18.
  • Jain, D. Singh, N. Vijayan, S.N. Sharma, Time-controlled synthesis mechanism analysis of kesterite-phased Cu 2 ZnSnS 4 nanorods via colloidal route, Applied Nanoscience, 8 (2018) 435–446.
  • Kotke M, Schreiner PR. (Thio) urea organocatalysts Ch-6, Hydrogen Bond Organ Synthesis. Nov 2009;141–351.
  • Min C, Seidel D. Asymmetric Brønsted acid catalysis with chiral carboxylic acids, Chem Soc Rev. 2017;46(19) :5889–5902.
  • Li X, Zhang Q, Li Z, et al. Thiourea binding with carboxylic acid promoted cationic ring-opening polymerization. Polymer. 2016;84:293–303.
  • Xie M, Zhuang D, Zhao M, et al. Preparation and characterization of Cu2ZnSnS4 thin films and solar cells fabricated from quaternary Cu-Zn-Sn-S target, vol. 2013, Article ID 929454, 9 pages Int J Photoenerg. 2013.
  • Liu W, Guo B, Wu X, et al. Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect. J Mater Chem A. 2013;1(9):3182–3186.
  • Fernandes P, Salomé P, Da Cunha A. Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J Alloys Compd. 2011;509(28):7600–7606.
  • Kumar S, Kasubosula B, Loorits M, et al. Synthesis of Cu2ZnSnS4 solar cell absorber material by Sol-gel method. Energy Procedia. 2016;102:102–109.
  • Wei M, Du Q, Wang D, et al. Synthesis of spindle-like kesterite Cu2ZnSnS4 nanoparticles using thiourea as sulfur source. Mater Lett. 2012;79:177–179.
  • Kumar Y, Bhaskar PU, Babu GS, et al. Effect of copper salt and thiourea concentrations on the formation of Cu2ZnSnS4 thin films by spray pyrolysis. Phys Status Solidi A. 2010;207(1):149–156.
  • Jain S, Sharma SN, Kumar M. Synthesis and properties of CdSe quantum dot sensitized ZnO nanocomposites. Phys E Low Dimens Syst Nanostruct. 2011;44(3):555–564.
  • Sharma H, Sharma SN, Singh G, et al. Studies of optical and structural properties of CdSe/polymer nanocomposites: evidence of charge transfer and photostability. Colloid Polym Sci. 2007;285(11):1213–1227.
  • Pathak D, Wagner T, Adhikari T, et al. AgInSe2.PCBM.P3HT inorganic organic blends for hybrid bulk heterojunction photovoltaics. Synth Met. 2015;200:102–108.
  • Lu Y, Hou Y, Wang Y, et al. Effect of monodisperse Cu2S nanodisks on photovoltaic performance of P3HT/PCBM polymer solar cells. Synth Met. 2011;161(9–10):906–910.
  • Park C-J, Lee YB, Jeon S, et al. Nanoscale optoelectronic properties of organic p–n junction P3HT/PCBM nanoparticles hybridized with CdSe/ZnS quantum dots Synth Met. 2014;193:17–22.
  • Chen S, Manders JR, Tsang S-W, et al. Metal oxides for interface engineering in polymer solar cells. J Mater Chem. 2012;22(46):24202–24212.
  • Zhou X, Meng W, Dong C, et al. Cu2 ZnSnS4 quantum dots as effective electron acceptors for hybrid solar cells with a broad spectral response. RSC Adv. 2015;5(110):90217–90225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.