Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 8
389
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Antibacterial and photocatalytic activity of ZnO, SnO2 and Zn2SnO4 nanoparticles prepared by Microwave assisted method

&
Pages 717-727 | Received 22 Sep 2020, Accepted 30 Dec 2020, Published online: 21 Jan 2021

References

  • Brillson L, Cox J, Gao H, et al. Native point defect measurement and manipulation in ZnO nanostructures. Materials (Basel). 2019;12:2242.
  • Abdullayeva N, Altaf CT, Mintas M, et al. Investigation of strain effects on photoelectrochemical performance of flexible ZnO electrodes. Sci Rep. 2019;9:11006.
  • Chandramohan R, Deva Arun Kumar K, Valanarasu S, Ganesh V, Shkir M, Algarrni H, Alfaify S. Transition metal (Mn) and rare earth (Nd) di-doped novel ZnO nanoparticles: a facile sol–gel synthesis and characterization, J Mater Sci.2018; 29(15): 13077–13086.
  • Jiaqiang X, Jia X, Lou X, et al. One-step hydrothermal synthesis and gas sensing property of ZnSnO3 microparticles. Solid-State Electron. 2006;50(3):504–507.
  • Talebian N, Nilforoushan MR, Zargar EB. Enhanced antibacterial performance of hybrid semiconductor nanomaterials: znO/SnO2 nanocomposite thin films. Appl Surf Sci. 2011;258(1):547–555.
  • Pal S, Mondal S, Maity J. Synthesis, characterization and photocatalytic properties of ZnO nanoparticles and cotton fabric modified with ZnO nanoparticles via in-situ hydrothermal coating technique: dual response. Mater Technol. 2018;14:884–891.
  • Paraguay D. F, Miki-Yoshida M, Morales J, et al. Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films. 2000;373(1–2):137–140.
  • Besinis A, De Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014;8(1):1–16.
  • Wu J, Liang H, Deng G, Yu Z. Synthesis and growth mechanism of Zn2SO4(OH)2·2H2O and ZnO whiskers, Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni. 2015;54(3):93–97.
  • Santhi K, Rani C, Dhilip Kumar R, Karuppuchamy S, Synthesis of nanoporous Zn-WO3 by microwave irradiation method for photocatalytic applications,J. Mater. Sci. Mater. Elect. 2015; 26; 10068-10074.
  • Hankare PP, Chate  PA, Sathe DJ, Chavan PA, Bhuse VM, Effect of thermal annealing on properties of zinc selenide thin films deposited by chemical bath deposition,J Mater Sci. 2009;20(4):374–379.
  • Nejati K, Rezvani Z, Pakizevand R. Synthesis of ZnO nanoparticles and investigation of the ionic template effect on their size and shapeInt Nano Lett. 2011;1(2):75-81.
  • Vorkapic D, Matsoukas T. Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides. J Am Ceram Soc. 1998;81(11):2815–2820.
  • Dutta M, Mridha S, Basak D. Effect of sol concentration on the properties of ZnO thin films prepared by sol–gel technique. Appl Surf Sci. 2008;254(9):2743–2747.
  • Gang Xiong U, Pal JG, Serrano K, et al. Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Physica Status Solidi C. 2006;3(10):3577–3581. .
  • Al-Hada NM, Kamari HM, Baqer AA, et al. Thermal calcination-based production of SnO2 nanopowder: an analysis of SnO2 nanoparticle characteristics and antibacterial activities. Nanomaterials. 2018;8(4):250.
  • Pal U, Garcia Serrano J, Santiago P, et al. Synthesis and optical properties of ZnO nanostructures with different morphologies. Opt Mater. 2006;29(1):65–69.
  • Music S, Dragcevic D, Popovic S, et al. Precipitation of ZnO particles and their properties. Mater Lett. 2005;59(19):2388–2393.
  • Xing YJ, Xi ZH, Xue ZQ, et al. Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl Phys Lett. 2003;83(9):1689–1691.
  • El Manouni A, Manjon FJ, Perales M, et al. Effect of thermal annealing on ZnO:Al thin films grown by spray pyrolysis. Superlattices Microstruct. 2007;42(1–6):134–139.
  • Manjon FJ, Mari B, Serrano J, et al. Silent Raman modes in zinc oxide and related nitrides. J Appl Phys. 2005;97(5):053516.
  • Aragon FH, Coaquira JAH, Hidalgo P, et al. Evidences of the evolution from solid solution to surface segregation in Ni-doped SnO2 nanoparticles using Raman spectroscopy. J Raman Spectroscopy. 2011;42(5):1081–1086.
  • Mali SS, Shim CS, Hong CK. Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Sci Rep. 2015;5:11424.
  • Mishra SK, Srivastava RK, Prakash SG, et al. Photoluminescence and photoconductive characteristics of hydrothermally synthesized ZnO nanoparticles. Opto-Electron Rev. 2010;18(4):467–473.
  • Neenu Varghese LS, Hanapi PM, N. R. Rao C, et al. Solvothermal synthesis of nanorods of ZnO, N-doped ZnO and CdO. Mater Res Bull. 2007;42(12):2117–2124.
  • Vanheusden K, Warren WL, Seager CH, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys. 1996;79(10):7983–7990.
  • Jia T, Fang F, Zhao J, Chen J, Wang X, Fan Z, Cui L, Meng F, Sonochemical Synthesis, Characterization, and Photocatalytic Activity of N-Doped TiO2 Nanocrystals with Mesoporous Structure,  Int J Photoenerg. 2014;2014:1–7.
  • Wang J, Sun XW, Xie S, Zhou W, Yang Y, Single-crystal and twinned Zn2SnO4 nanowires with axial periodical structures, Cryst Growth Design. 2008;8(2):707–710.
  • Kim HS, Hwang SO, Myung Y, et al. Three-dimensional structure of helical and zigzagged nanowires using electron tomography. Nano Lett. 2008;8(2):551–557.
  • Zhou S, Potzger K, Reuther H, et al. Absence of ferromagnetism in V-implanted ZnO single crystals. J Appl Phys. 2007;101(9):09H109.
  • Kappers LA, Gilliam OR, Evans SM, et al. EPR and optical study of oxygen and zinc vacancies in electron-irradiated ZnO. Nucl Instr Meth Phys Res B. 2008;266:2953–2957. .
  • Zeng H, Duan G, Yue L, et al. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv Funct Mater. 2010;20:561–572.
  • Ahmed A, Siddique MN, Ali T, Tripathi P. Superparamagnetic behavior in Sn0.95Mg0.05O2 nanoparticles, AIP Conf Proc. 2018;1942(1):050055.
  • Sharma S, Pandey H, Kumar M, et al. Room temperature ferromagnetism and electrical properties of Mn-doped Zn2SnO4 nanorods. Superlattices Microstruct. 2018;120:161–169.
  • Qilin L, Shaily Mahendra DY, Lyon LB, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008;42(18):4591–4602.
  • Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity, Appl Microbiol Biotechnol. 2011;90(6):1847–1868.
  • Wilson MR, Lightbody JH, Donaldson K, et al. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol. 2002;184(3):172–179.
  • Nanjappan K, Aarumugam V, Kesavan V. Plasma process for coated fabric materials with Zinc to prepare antibacterial modal fabric. Mater Technol. 2018;33(10):635–641.
  • Fang M, Chen J-H, Xiu-Li X, et al. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents. 2006;27(6):513–517.
  • Vijayaprasath G, Soundarrajan P, Ravi G. Synthesis of ZnO nanosheets morphology by Ce doping for photocatalytic activity. J Electron Mater. 2019;48:684–695.
  • Yazdi MET, Hamidi A, Amiri MS, et al. Eco-friendly and plant-based synthesis of silver nanoparticles using Allium giganteum and investigation of its bactericidal, cytotoxicity, and photocatalytic effects. Mater Technol. 2019;34:490–497.
  • Gao H, Yang H, Yang G, et al. Effects of oxygen vacancy and sintering temperature on the photoluminescence properties and photocatalytic activity of CeO2nanoparticles with high uniformity. Mater Technol. 2018;33(5):321–332.
  • Baig ABA, Rathinam V, Ramya V. Synthesis and Investigation of Fe doped SnO2 Nanoparticles for Improved Photocatalytic Activity under Visible Light and Antibacterial performances,  Mater Technol. 2020. DOI:https://doi.org/10.1080/10667857.2020.1786781

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.