Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 8
629
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Nickel hydroxide nanosheets grown on nickel foam for high performance supercapacitor applications

, ORCID Icon &
Pages 728-734 | Received 15 Oct 2020, Accepted 30 Dec 2020, Published online: 15 Jan 2021

References

  • Kkrishnasamya K, Purushothamanb KK. Preparation and characterization of MnS@ Mn3O4/C nanoflakes for hybrid supercapacitor applications. Mater Technol. 2020;1–8. DOI:https://doi.org/10.1080/10667857.2020.1810923
  • Srikesh G, Samson Nesaraj A. Facile soft chemical synthesis and characterization of novel cobalt doped nickel oxide based nanostructured electrode materials for electrochemical capacitors. Mater Technol. 2020;1–14. DOI:https://doi.org/10.1080/10667857.2020.1824147
  • Mondal AK, Su D, Chen S, et al. Microwave-assisted synthesis of spherical β-Ni(OH)2 superstructures for electrochemical capacitors with excellent cycling stability. Chem Phys Lett. 2014;610–611:115–120.
  • Gao X, Shi W, Ruan P, et al. Ultrathin carbon boosted sodium storage performance in aqueous electrolyte. Funct Mater Lett. 2020;13:2030002–2030011.
  • Zhai S, Jin K, Zhou M, et al. A novel high performance flexible supercapacitor based on porous carbonized cotton/ZnO nanoparticle/CuS micro-sphere. Colloids Surf A Physicochem Eng Asp. 2020;584:124025.
  • Zhai S, Jin K, Zhou M, et al. In-situ growth of fl ower-like CuS microsphere on carbonized cotton for high- performance fl exible supercapacitor. Colloids Surf A. 2019;575:75–83.
  • Khoh W, Wee B, Hong J. High performance fl exible solid-state asymmetric supercapacitor composed of a polyaniline/PEDOT/polyaniline/ultralarge reduced graphene oxide tetralayer fi lm and a PEDOT/MoS2 composite fi lm. Colloids Surf A. 2019;581:123815.
  • Ates M, Caliskan S, Ozten E. Preparation of rGO/Ag/PEDOT nanocomposites for supercapacitors. Mater Technol. 2018;33(14):872–883.
  • Li WS, Shih YC, Cheng HC. Green synthesis of CNTs/Ni(OH)2 nanostructures for electrochemical supercapacitors. Chem Phys Lett. 2020;750:137499.
  • Niu L, Wang Y, Shan S, et al. Facilely synthesis of 3D CuxO-Cu nanostructures as binder-free electrode for supercapacitors. Chem Phys Lett. 2016;652:172–176.
  • Wang D, Guan B, Li Y, et al. Morphology-controlled synthesis of hierarchical mesoporous α-Ni(OH)2 microspheres for high-performance asymmetric supercapacitors. J Alloys Compd. 2018;737:238–247.
  • Jiang X, Cheng W, Hu H, et al. Facile preparation of a novel composite Co-Ni(OH)2/carbon sphere for high-performance supercapacitors. Mater Technol. 2018. DOI:https://doi.org/10.1080/10667857.2018.1548115
  • Aguilera L, Leyet Y, Peña-Garcia R, et al. Cabbage-like α-Ni(OH)2 with a good long-term cycling stability and high electrochemical performances for supercapacitor applications. Chem Phys Lett. 2017;677:75–79.
  • Yasoda KY, Mikhaylov AA, Medvedev AG, et al. Brush like polyaniline on vanadium oxide decorated reduced graphene oxide: efficient electrode materials for supercapacitor. J Energy Storage. 2019;22:188–193.
  • Li W-S, Chang M-L, Cheng H-C. Facile synthesis of CNTs/Co(OH)2 hybrid nanostructures for high-performance electrochemical supercapacitor. Chem Phys Lett. 2020;739:137003.
  • Kim H, Ramalingam M, Balakumar V, et al. Chemically interconnected ternary AgNP/polypyrrole/functionalized buckypaper composites as high-energy-density supercapacitor electrodes. Chem Phys Lett. 2020;739:136957.
  • Yu M, Song Z, Zhang C, et al. One-step synthesis of mesoporous carbons from mixed resources by microwave-assisted phosphoric acid activation for supercapacitors. Mater Technol. 2017. DOI:https://doi.org/10.1080/10667857.2017.1344370
  • Liu S, Tan X, Zhang H, et al. Influences of trace graphite on the morphology and capacitance of CoOOH/Co(OH)2 nanocomposites. Funct Mater Lett. 2020;13:2050018–2050023.
  • Lokhande PE, Chavan US. Surfactant-assisted cabbage rose-like CuO deposition on Cu foam by for supercapacitor applications. Inorg Nano Metal Chem. 2018;48:434–440.
  • Lokhande PE, Chavan US. All-solid-state asymmetric supercapacitor based on ni.co layered double hydroxide and rgo nanocomposite deposited on ni foam. J Electrochem Energy Conv Storage. 2020;17:031013.
  • Brisse AL, Stevens P, Toussaint G, et al. Ni(OH)2 and NiO based composites: battery type electrode materials for hybrid supercapacitor devices. Materials (Basel). 2018;11:1178.
  • Brousse T, Bélanger D, Long JW. To be or not to be pseudocapacitive? J Electrochem Soc. 2015;162:A5185–A5189.
  • Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science. 2014;343(80):1210–1211.
  • Urso M, Torrisi G, Boninelli S, et al. Ni(OH)2@Ni core-shell nanochains as low-cost high-rate performance electrode for energy storage applications. Sci Rep. 2019;9:1–11.
  • Krause A, Kossyrev P, Oljaca M, et al. Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black. J Power Sources. 2011;196:8836–8842.
  • Naoi K. “Nanohybrid capacitor”: the next generation electrochemical capacitors. Fuel Cells. 2010;10:825–833.
  • Kummara VGR, Rajangam V, Chandu VVMG, et al. Facile synthesis of hierarchical agglomerated cauliflower-like ZnWO4@NiO nanostructures as an efficient electrode material for high-performance supercapacitor applications. Mater Lett. 2020;268:127594.
  • Dubal DP, Fulari VJ, Lokhande CD. Effect of morphology on supercapacitive properties of chemically grown β-Ni(OH)2 thin films. Microporous Mesoporous Mater. 2012;151:511–516.
  • Gund GS, Dubal DP, Shinde SS, et al. One step hydrothermal synthesis of micro-belts like β-Ni(OH)2 thin films for supercapacitors. Ceram Int. 2013;39:7255–7261.
  • Kore RM, Lokhande BJ. Hierarchical mesoporous network of amorphous α − Ni(OH)2 for high performance supercapacitor electrode material synthesized from a novel solvent deficient approach. Electrochim Acta. 2017;245:780–790.
  • Sugimoto W, Iwata H, Yasunaga Y, et al. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew Chem Int Educ. 2003;42:4092–4096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.