Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 8
162
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Photodegradation of organic dyes and antibacterial activity of Escherichia coli and Staphylococcus aureus by ZnO nanoparticles under UVA radiation

ORCID Icon, , , , &
Pages 789-797 | Received 25 Oct 2020, Accepted 29 Jan 2021, Published online: 10 Feb 2021

References

  • Sunar NM, Mon ZK, Rahim NA, et al. Bioremediation of coractive blue dye by using Pseudomenas app. Isolated from the textile dye wastewater. IOP Conf Ser Earth Environ Sci. 2018;140:1–8.
  • Hu B, Sun Q, Zuo CI, et al. A highly efficient porous rod-like Ce-doped ZnO photocatalyst for the degradation of dye contaminants in water. BEILSTEIN J Nanotechnol. 2019;10:1157–1165.
  • Noman MT, Petru M, Militký J, et al. One-pot sonochemical synthesis of ZnO nanoparticles for photocatalytic applications, modelling and optimization. Mater. 2019;13:1–18.
  • Widiyandari H, Umiati NAK, Herdianti RD. Synthesis and photocatalytic property of zinc oxide (ZnO) fine particle using flame spray pyrolysis method. J Phys Conf Ser. 2018;1025:1–7.
  • Chen X, Wu Z, Liu D, et al. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res Lett. 2017;12:1–10.
  • Jaramillo-Páez CA, Navío JA, Hidalgo MC, et al. ZnO and Pt-ZnO photocatalysts: characterization and photocatalytic activity assessing by means of three substrates. Catal Today. 2018;313:12–19.
  • Zhang Q, Xu M, You B, et al. Oxygen vacancy-mediated ZnO nanoparticle photocatalyst for degradation of methylene blue. Appl Sci. 2018;8:1–12.
  • Torres-Martínez LM, Luévano-Hipólito E. Sonochemical synthesis of ZnO nanoparticles and its use as photocatalyst in H2 generation. Mater Sci Eng, B. 2017;226:223–233.
  • Pigeot-Rémy S, Gregori D, Hazime R, et al. Size and shape effect on the photocatalytic efficiency of TiO2 brookite. J Mater Sci. 2019;54:1213–1225.
  • Kaur H, Kumar S, Verma NK, et al. Role of pH on the photocatalytic activity of TiO2 tailored by W/T mole ratio. J Mater Sci - Mater Electron. 2018;29:16120–16135.
  • Pal S, Mondal S, Maity J. Synthesis, characterization and photocatalytic properties of ZnO nanoparticles and cotton fabric modified with ZnO nanoparticles via in-situ hydrothermal coating technique: dual response. Mater Technol - Adv Perform Mater. 2018;33:884–891.
  • Pal S, Mondal S, Maity J. In situ generation and deposition of ZnO nanoparticles on cotton surface to impart hydrophobicity: investigation of antibacterial activity. Mater Technol - Adv Perform Mater. 2018;33:555–562.
  • Zheng Z, Mounsamy M, Lauth-de Viguerie N, et al. Luminescent zinc oxide nanoparticles: from stabilization to slow digestion depending on the nature of polymer coating. Polym Chem. 2019;10:145–154.
  • Jassem EK, Majeed AMA, Umran NM. The effect of temperature on structural and opticalPropertiesof manganese oxide nanoparticles. J Phys Conf Ser. 2019;1279:1–7.
  • da Silva BL, Caetano BL, Chiari-Andréo BG, et al. Increased antibacterial activity of ZnO nanoparticles: influence of size and surface modification. Colloids Surf B. 2019;177:440–447.
  • Kim I, Viswanathan K, Kasi G, et al. ZnO nanostructures in active antibacterial food packaging: preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev Int. 2020;1–29. DOI:https://doi.org/10.1080/87559129.2020.1737709
  • Tiwari V, Mishra N, Gadani K, et al. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant acinetobacter baumannii. Front Microbiol. 2018;9:1–10.
  • Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073–3273. U.S.A; 2001.
  • Jayaprakash N, Suresh R, Rajalakshmi S, et al. One-step synthesis, characterisation, photocatalytic and bio-medical applications of ZnO nanoplates. Mater Technol - Adv Perform Mater. 2020;35:112–124.
  • Junploy P, Phuruangrat A, Thongtem S, et al. Effect of surfactants on phase, crystal growth and photocatalysis of calcium stannate synthesized by cyclic microwave and calcination combination. Res Chem Intermed. 2018;44:5981–5993.
  • Sedeh AN, Kooti M. Microwave-assisted combustion synthesis of ZnO nanoparticles. J Chem. 2013;2013:1–4.
  • Smith BC. Infrared spectral interpretation: a systematic approach, Infrared spectra of polymers. New York, Boca Raton: CRC Press; 1998.
  • Anand B, Muthuvel A. Synthesis and characterization of ZnO nanoparticles using effective of Co doped. Int J Res Appl Sci Eng Technol. 2017;5:1969–1973.
  • Li Y, Chen -L-L, Lian -X-X, et al. Preparation and characterisation of ZnO/HAP bioceramics with excellent antibacterial property. Mater Technol - Adv Perform Mater. 2019;34:415–422.
  • Jay Chithra M, Sathya M, Pushpanathan K. Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metall Sinica. 2015;28:394–404.
  • Zhang H, Ji XY, Xu J, et al. Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process. Nanotechnol. 2004;15:622–626.
  • Amin G, Asif MH, Zainelabdin A, et al. Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J Nanomater. 2011;2011:1–9.
  • Khorsand Zak A, Ebrahimizadeh Abrishami M, Abd WH. Hosseini, Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram Int. 2011;37:393–398.
  • Bindua P, Thomasa S. Optical properties of ZnO nanoparticles synthesised from a polysaccharide and ZnCl2. Acta Phys Pol A. 2017;131:1474–1478.
  • Nguyen NT, Nguyen TMN, Le NT, et al. Suppressing the photocatalytic activity of ZnO nanoparticles by Al-doping for the application in sunscreen products. Mater Technol -Adv Perform Mater. 2020;35:349–355.
  • Floriano EA, de Andrade Scalvi LV, Sambrano JR, et al. Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films. Mater Res. 2010;13:437–443.
  • Bao J, Shalish I, Su Z, et al. Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires. Nanoscale Res Lett. 2011;6:1–7.
  • Li C, Zhou H, Yang S, et al. Preadsorption of O2 on the exposed (001) facets of ZnO nanostructures for enhanced sensing of gaseous acetone. ACS Appl Nano Mater. 2019;2:6144–6151.
  • Zhao J-H, Liu C-J, Lv Z-H. Photoluminescence of ZnO nanoparticles and nanorods. Optik. 2016;127(3):1421–1423.
  • Saikia L, Bhuyan D, Saikia M, et al. Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Appl Catal, A. 2015;490:42–49.
  • Nasralla NHS, Yeganeh M, Šiller L. Photoluminescence study of anatase and rutile structures of Fe-doped TiO2 nanoparticles at different dopant concentrations. Appl Phys A. 2020;126(192):1–7.
  • Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7:219–242.
  • Foster HA, Ditta IB, Varghese S, et al. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol. 2011;90:1847–1868.
  • Barthomeuf M, Raymond P, Policarpo N, et al. Bactericidal efficiency of UVA-active titanium dioxide thin layers on bacteria from food industry environments. Mater Technol -Adv Perform Mater. 2017;32:782–791.
  • Chai L, Teo SS, Rahim RA, et al. Transcripts of Gracilaria changii that improve copper tolerance of Escherichia coli. Asia Pac J Mol Biol Biotechnol. 2010;18:315–319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.