Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 8
319
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The exploration of a CuNb3O8 Li+-storage anode compound

, , , & ORCID Icon
Pages 814-821 | Received 10 Jan 2021, Accepted 23 Feb 2021, Published online: 11 Mar 2021

References

  • Qian J, Liu L, Yang J, et al. Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries. Nat Commun. 2018;9(1):1–11. .
  • Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928–935.
  • Armand M, Tarascon JM. Building better batteries. Nature. 2008;154:652–657.
  • Nagaura T. Lithium ion rechargeable battery. Prog Batts Sol Cells. 1990;9:209.
  • Wang T, Ren K, He M, et al. Synthesis and manipulation of single-crystalline lithium nickel manganese cobalt oxide cathodes: a review of growth mechanism. Front Chem. 2020;8:747.
  • Chen K, Liang F, Zhu T, et al. Nanocrystalline coatings and their electrochemical energy storage applications. Funct Mater Lett. 2020;13(3):2030001. .
  • Mace A, Montalvo M, Lu Y, et al. Three-dimensional porous graphene anodes for sodium-ion batteries. Funct Mater Lett. 2020;13(1):1951009. .
  • Wang T, Ren K, Xiao W, et al. Tuning the Li/Ni disorder of the NMC811 cathode by thermally driven competition between lattice ordering and structure decomposition. J Phys Chem C. 2020;124(10):5600–5607. .
  • Hou J, Hou CP, Wang XW, et al. Cyclic utilisation of waste tires as nanostructured anode materials for Li-ion batteries. Mater Technol. 2020;35(9–10):612–617. .
  • Suslova E, Viktorova A, Osipov N, et al. The influence of heterosubstitution on carbon foams characteristics as electrode materials for lithium-ion batteries. Funct Mater Lett. 2020;13(4):2040003. .
  • Shen L, Zhang X, Uchaker E, et al. Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv Energy Mater. 2012;2(6):691–698. .
  • Lin X, Pan F, Wang H. Progress of Li4Ti5O12 anode material for lithium ion batteries. Mater Technol. 2014;29(A2):82–87.
  • Park KS, Benayad A, Kang DJ, et al. Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J Am Chem Soc. 2008;130(45):14930–14931. .
  • Wang Q, Lu M, Miao J. Li2SiO3@ Li4Ti5O12 nanocomposites as anode material for lithium-ion batteries. Mater Technol. 2016;31(8):471–476.
  • Li H, Wang Z, Chen L, et al. Research on advanced materials for Li‐ion batteries. Adv Mater. 2009;21(45):4593–4607. .
  • Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22(3):587–603.
  • Li R, Zhu X, Fu Q, et al. Nanosheet-based Nb12O29 hierarchical microspheres for enhanced lithium storage. Chem Commun. 2019;55(17):2493–2496. .
  • Yang L, Zhu X, Li X, et al. Conductive copper niobate: superior Li+‐storage capability and novel Li+‐transport mechanism. Adv Energy Mater. 2019;9(39):1902174. .
  • Hu L, Luo L, Tang L, et al. Ti2Nb2xO4+5x anode materials for lithium-ion batteries: a comprehensive review. J Mater Chem A. 2018;6(21):9799–9815. .
  • Han JT, Huang YH, Goodenough JB. New anode framework for rechargeable lithium batteries. Chem Mater. 2011;23(8):2027–2029.
  • Wu X, Miao J, Han W, et al. Investigation on Ti2Nb10O29 anode material for lithium-ion batteries. Electrochem Commun. 2012;25:39–42.
  • Deng S, Luo Z, Liu Y, et al. Ti2Nb10O29–x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries. J Power Sources. 2017;362(15):250–257. .
  • Yang C, Deng S, Lin C, et al. Porous TiNb24O62 microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles. Nanoscale. 2016;8(44):18792–18799. .
  • Griffith KJ, Wiaderek KM, Cibin G, et al. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature. 2018;559(7715):556–563. .
  • Fu Q, Li R, Zhu X, et al. ‘Design, synthesis and lithium-ion storage capability of Al0.5Nb24.5O62. J Mater Chem A. 2019;7(34):19862–19871. .
  • Li R, Liang G, Zhu X, et al. Mo3Nb14O44: a new Li+ container for high‐performance electrochemical energy storage. Energy Environ Mater. 2021;4(1):65-71. DOI:https://doi.org/10.1002/eem2.12098.
  • Zhu X, Cao H, Li R, et al. Zinc niobate materials: crystal structures, energy-storage capabilities and working mechanisms. J Mater Chem A. 2019;7(44):25537–25547. .
  • Larson AC, Von Dreele RB. 1994. General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86–748.
  • Toby BH. EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr. 2001;34:210–213.
  • Marinder BO, Werner PE, Wahlstroem E, et al. Investigations on a new copper niobium oxide of LiNb3O8 type using chemical analysis and X-ray powder diffraction profile analysis. Acta Chem Scand Ser A. 1980;34:51–56. .
  • Jian Z, Lu X, Fang Z, et al. LiNb3O8 as a novel anode material for lithium-ion batteries. Electrochem Commun. 2011;13(10):1127–1130. .
  • Xu H, Shu J, Hu X, et al. Electrospun porous LiNb3O8 nanofibers with enhanced lithium-storage properties. J Mater Chem A. 2013;1(47):15053–15059. .
  • Poulston S, Parlett PM, Stone P, et al. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf Interface Anal. 1996;24(12):811–820. .
  • Wang X, Shen G. Intercalation pseudo-capacitive TiNb2O7@ carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy. 2015;15:104–115.
  • Lee J, Urban A, Li X, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science. 2014;343(6170):519–522. .
  • Qian S, Yu H, Yan L, et al. High-rate long-life pored nanoribbon VNb9O25 built by interconnected ultrafine nanoparticles as anode for lithium-ion batteries. ACS Appl Mater Interfaces. 2017;9(36):30608–30616. .
  • Zhu H, Cheng X, Yu H, et al. K6Nb10. 8O30 groove nanobelts as high performance lithium-ion battery anode towards long-life energy storage. Nano Energy. 2018;52:192–202.
  • Fu Q, Zhu X, Li R, et al. A low-strain V3Nb17O50 anode compound for superior Li+ storage. Energy Storage Mater. 2020;30:401–411.
  • Takai S, Kamata M, Fujine S, et al. Diffusion coefficient measurement of lithium ion in sintered Li1.33Ti1.67O4 by means of neutron radiography. Solid State Ion. 1999;123((1–4)):165–172. .
  • Wagemaker M, Van Eck ERH, Kentgens APM, et al. Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. J Phys Chem B. 2009;113(1):224–230. .
  • Guo B, Yu X, Sun XG, et al. A long-life lithium-ion battery with a highly porous TiNb2O7anode for large-scale electrical energy storage. Energy Environ Sci. 2014;7(7):2220–2226. .
  • Ise K, Morimoto S, Harada Y, et al. Large lithium storage in highly crystalline TiNb2O7 nanoparticles synthesized by a hydrothermal method as anodes for lithium-ion batteries. Solid State Ion. 2018;320:7–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.