Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 8
265
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Fabrication and characterisation of antibacterial porous alginate/aloe vera structures containing chitosan nanoparticles for wound dressing applications

ORCID Icon &
Pages 822-828 | Received 28 Jan 2021, Accepted 23 Feb 2021, Published online: 10 Mar 2021

References

  • Li S, Dong S, Xu W, et al. Antibacterial hydrogels. Adv Sci. 2018;5(5):1700527.
  • Kamoun EA, Kenawy E-RS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8(3):217–233, 2090–1232.
  • Kumar A, Wang X, Nune KC, et al. Biodegradable hydrogel‐based biomaterials with high absorbent properties for non‐adherent wound dressing. Int Wound J. 2017;14(6):1076–1087.
  • Serinçay H, Özkan S, Yılmaz N, et al. PVA/PAA-based antibacterial wound dressing material with aloe vera. Polym-Plast Technol Eng. 2013;52(13):1308–1315.
  • Ambekar RS, Kandasubramanian B. Advancements in nanofibers for wound dressing: a review. Eur Polym J. 2019;117:304–336. %@ 0014-3057.
  • Rubio-Elizalde I, Bernáldez-Sarabia J, Moreno-Ulloa A, et al. Scaffolds based on alginate-PEG methyl ether methacrylate-moringa oleifera-aloe vera for wound healing applications. Carbohydr Polym. 2019;206:455–467.
  • Koga AY, Pereira AV, Lipinski LC, et al. Evaluation of wound healing effect of alginate films containing aloe vera (aloe barbadensis miller) gel. J Biomater Appl. 2018;32(9):1212–1221.
  • Ma R, Wang Y, Qi H, et al. Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: in vitro and in vivo evaluation. Compos Part B Eng. 2019;167:396–405. %@ 1359-8368.
  • Zhang M, Zhao X. Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol. 2020. 162:1414–1428. DOI.https://doi.org/10.1016/j.ijbiomac.2020.07.311.
  • Varaprasad K, Jayaramudu T, Kanikireddy V, et al. Alginate-based composite materials for wound dressing application: a mini review. Carbohydr Polym. 2020;236:116025.
  • Gómez Chabala LF, Cuartas CEE, López MEL. Release behavior and antibacterial activity of chitosan/alginate blends with aloe vera and silver nanoparticles. Mar Drugs. 2017;15(10):328.
  • Hajian M, Mahmoodi M, Imani R. In vitro assessment of poly (vinyl alcohol) film incorporating aloe vera for potential application as a wound dressing. J Macromol Sci Part B. 2017;56(7):435–450.
  • Wijayadi LJ, Rusli TR. Characterized and synthesis of chitosan nanoparticle as nanocarrier system technology. IOP Conference Series: Materials Science and Engineering, Volume 508, Tarumanagara International Conference on the Applications of Technology and Engineering 22–23 November 2018, Jakarta, Indonesia.Citation Linda Julianti Wijayadi and Taty Rusliati Rusli 2019 IOP Conf. Ser.: Mater. Sci. Eng. 508 012143; 2019.
  • Abdel-Mohsen AM, Abdel-Rahman RM, Kubena I, et al. Chitosan-glucan complex hollow fibers reinforced collagen wound dressing embedded with aloe vera. Part I: preparation and characterization. Carbohydr Polym. 2020;230:115708.
  • Ranjbar R, Yousefi A. Effects of aloe vera and chitosan nanoparticle thin-film membranes on wound healing in full thickness infected wounds with methicillin resistant Staphylococcus aureus. Bull Emergency Trauma. 2018;6(1):8.
  • Sun D, Babar Shahzad M, Li M, et al. Antimicrobial materials with medical applications. Mater Technol. 2015;30(sup6):B90–B95.
  • Nune K, Somani MC, Spencer CT, et al. Cellular response of Staphylococcus aureus to nanostructured metallic biomedical devices: surface binding and mechanism of disruption of colonization. Mater Technol. 2017;32(1):22–31.
  • Luo F, Tang Z, Xiao S, et al. Study on properties of copper-containing austenitic antibacterial stainless steel. Mater Technol. 2019;34(9):525–533.
  • Ma Z, Ren L, Liu R, et al. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti–6Al–4V–5Cu alloy. J Mater Sci Technol. 2015;31(7):723–732.
  • Aziz WJ, Abid MA, Hussein EH. Biosynthesis of CuO nanoparticles and synergistic antibacterial activity using mint leaf extract. Mater Technol. 2020;35(8):447–451.
  • Girase B, Depan D, Shah JS, et al. Silver–clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater Sci Eng C. 2011;31(8):1759–1766.
  • Misra RDK, Girase B, Depan D, et al. Hybrid nanoscale architecture for enhancement of antimicrobial activity: immobilization of silver nanoparticles on thiol‐functionalized polymer crystallized on carbon nanotubes. Adv Eng Mater. 2012;14(4):B93–B100.
  • Jyoti K, Arora D, Fekete G, et al. Antibacterial and anti-inflammatory activities of Cassia fistula fungal broth-capped silver nanoparticles. Mater Technol. 2020;1–11. doi:https://doi.org/10.1080/10667857.2020.1802841
  • Abbas WS, Atwan ZW, Abdulhussein ZR, et al. Preparation of silver nanoparticles as antibacterial agents through DNA damage. Mater Technol. 2019;34(14):867–879.
  • Jiang X, Tang X, Zhang B, et al. Antimicrobial activity and synergistic antibacterial mechanism of a combination of zinc and rare-earth scandium against Escherichia coli. Mater Technol. 2020;35(11–12):797–806.
  • Ramos-Corella K, Sotelo-Lerma M, Gil-Salido AA, et al. Controlling crystalline phase of TiO2 thin films to evaluate its biocompatibility. Mater Technol. 2019;34(8):455–462.
  • Liu H, Li D, Yang X, et al. Fabrication and characterization of Ag3PO4/TiO2 heterostructure with improved visible-light photocatalytic activity for the degradation of methyl orange and sterilization of E.coli. Mater Technol. 2019;34(4):192–203.
  • Liang Y, Wang S, Guo P. Effects of Ag on the photocatalytic activity of multiple layer TiO2 films. Mater Technol. 2017;32(1):46–51.
  • David TM, Wilson P, Mahesh R, et al. Photocatalytic water splitting of TiO2 nanotubes powders prepared via rapid breakdown anodization sensitized with Pt, Pd and Ni nanoparticles. Mater Technol. 2018;33(4):288–300.
  • Depan D, Misra R. On the determining role of network structure titania in silicone against bacterial colonization: mechanism and disruption of biofilm. Mater Sci Eng C. 2014;34:221–228.
  • Sunkara B, Misra R. Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomater. 2008;4(2):273–283.
  • Venkatasubramanian R, Srivastava R, Misra R. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants. Mater Sci Technol. 2008;24(5):589–595.
  • Rawat J, Rana S, Srivastava R, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng C. 2007;27(3):540–545.
  • Rawat J, Rana S, Sorensson MM, et al. Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanoparticles. Mater Sci Technol. 2007;23(1):97–102.
  • Rana S, Rawat J, Sorensson MM, et al. Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomater. 2006;2(4):421–432.
  • Rana S, Rawat J, Misra R. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2–NiFe2O4 biomaterial system. Acta Biomater. 2005;1(6):691–703.
  • Ma Z, Yao M, Liu R, et al. Study on antibacterial activity and cytocompatibility of Ti–6Al–4V–5Cu alloy. Mater Technol. 2015;30(sup6):B80–B85.
  • Pandimurugan A, Sankaranarayanan K. Antibacterial and photocatalytic activity of ZnO, SnO2 and Zn2SnO4 nanoparticles prepared by microwave assisted method. Mater Technol. 2021;1–11. DOI:https://doi.org/10.1080/10667857.2021.1873635
  • Li Y, Liu L, Qu X, et al. Drug delivery property, antibacterial performance and cytocompatibility of gentamicin loaded poly(lactic-co-glycolic acid) coating on porous magnesium scaffold. Mater Technol. 2015;30(sup6):B96–B103.
  • Naeimi M, Rafienia M, Fathi M, et al. Incorporation of chitosan nanoparticles into silk fibroin-based porous scaffolds: chondrogenic differentiation of stem cells. Int J Polym Mater Polym Biomater. 2016;65(4):202–209. %@ 0091-4037.
  • Gong Y, Han GT, Zhang YM, et al. Preparation of alginate membrane for tissue engineering. J Polym Eng. 2016;36(4):363–370.
  • Pereira R, Tojeira A, Vaz DC, et al. Preparation and characterization of films based on alginate and aloe vera. Int J Polym Anal Charact. 2011;16(7):449–464.
  • Baghersad S, Hajir Bahrami S, Mohammadi MR, et al. Development of biodegradable electrospun gelatin/aloe-vera/poly (ε‑caprolactone) hybrid nanofibrous scaffold for application as skin substitutes. Mater Sci Eng C. 2018;93:367–379. %@ 0928-4931.
  • Maji K, Dasgupta S, Pramanik K, et al. Preparation and evaluation of gelatin-chitosan-nanobioglass 3D porous scaffold for bone tissue engineering. Int J Biomater. 2016;2016:1–14.
  • Soares J, Santos JE, Chierice GO, et al. Thermal behavior of alginic acid and its sodium salt. Eclética Química. 2004;29(2):57–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.