Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 8
152
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effect of laser cladded co-doped strontium fluorapatite nanopowder coating on the antibacterial and cell attachment of Ti-6Al-4V implants for bone applications

ORCID Icon, , , & ORCID Icon
Pages 829-841 | Received 25 Aug 2020, Accepted 23 Feb 2021, Published online: 10 Mar 2021

References

  • Prakasam M, Locs J, Salma-Ancane K, et al. Fabrication, properties and applications of dense hydroxyapatite: a review. J Funct Biomat. 2015;6(4):1099–1140.
  • Amini M. Ultrafast synthesis of the nanostructured Al59Cu25.5Fe12.5B3 quasicrystalline and crystalline phases by high-energy ball milling: microhardness, electrical resistivity, and solar cell absorptance studies. In Press Adv Powder Technol. 2020;3110:4319–4335.
  • Amini M, Rahimipour MR, Tayebifard SA, et al. Effect of milling time on XRD phases and microstructure of a novel Al 67 Cu20 Fe10 B3 quasicrystalline alloy. Mater Res Express. 2020;7(6):065011.
  • Luo F, Tang Z, Xiao S, et al. Study on properties of copper-containing austenitic antibacterial stainless steel. Materials Technology. 2019;34(9):1–9.
  • Gu X, Cao R, Li Y, et al. Three-component antibacterial membrane of poly (butylene carbonate), poly (lactic acid) and chitosan prepared by electrospinning. J Mat Technol Adv Perform Mat. 2019;34:1–8.
  • Ibrahim M, Yu X, Chen J, et al. Fabrication of biodegradable MgXCu (X = 0, 0. 1), antibacterial property. Mater Technol. 2020;00:1–10.
  • Jemt T. Implant failures and age at the time of surgery: a retrospective study on implant treatment in 2915 partially edentulous jaws. Clinical Implant Dentistry and Related Research. 2019;21(4):514–520.
  • LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clinical Orthopaedics and Related Research. 2002;395:81–98.
  • Osborn JF, Newesely H. The material science of calcium phosphate ceramics. Biomaterials. 1980;1(2):108–111.
  • Gomes DS, Santos AMC, Neves GA, et al. A brief review on hydroxyapatite production and use in biomedicine. Cerâmica. 2019;65:282–302.
  • Graziani G, Boi M, Bianchi M. A review on ionic substitutions in hydroxyapatite thin films: towards complete biomimetism. Coatings. 2018;8(8):269.
  • Pajor K, Pajchel L, Kolmas J. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology—a review. Materials (Basel). 2019;12(17):2683.
  • Shepherd JH, Shepherd DV, Best SM. Substituted hydroxyapatites for bone repair. Journal of Materials Science: Materials in Medicine. 2020;31(10):2335–2347.
  • Zhang YM, Wang QT, Fu T, et al. Wet synthesis and structure stability of strontium-containing hydroxyapatite. Rare Met Mater Eng. 2004;33:1049–1051.
  • Wang DG, Chen CZ, Ma J, et al. In situ synthesis of hydroxyapatite coating by laser cladding. Colloids and Surfaces B: Biointerfaces. 2008;66(2):155–162.
  • Le Guéhennec L, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–854.
  • Grynpas MD, Marie PJ. Effects of low doses of strontium on bone quality and quantity in rats. Bone. 1990;11:313–319.
  • Kargozar S, Lotfibakhshaiesh N, Ai J, et al. Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities. Acta Biomater. 2017;58:502–514.
  • Costa AI, Gemini-Piperni S, Alves AC, et al. TiO2 bioactive implant surfaces doped with specific amount of Sr modulate mineralization. Mater Sci Eng C. 2021;120:111735.
  • Verberckmoes SC, De Broe, P. ME, D’Haese C. Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int. 2003;64:534–543.
  • Heimann RB. Plasma-sprayed hydroxylapatite-based coatings: chemical, mechanical, microstructural, and biomedical properties. J Therm Spray Technol. 2016;25:827–850.
  • Ganjali M, Ganjali M, Asgharpour S, et al. Recent advances on the design of Nanocomposite materials via laser techniques for Biomedical Applications, Advances in Nanostructured Composites. CRC press; Taylor & Francis Group, UK, 2019.
  • Ganjali M, Yazdanpanah A, Mozafari M. Advances in Nanostructured Composites. Adv Nanostructured Compos. Elsevier. 2019. doi:https://doi.org/10.1016/B978-0-323-51254-1.00008-7
  • Bosco R, Van Den Beucken J, Leeuwenburgh S, et al. Surface engineering for bone implants: a trend from passive to active surfaces. Coatings. 2012;2:95–119.
  • Wang Y, Li Y, Yu H, et al. In situ fabrication of bioceramic composite coatings by laser cladding. Surf Coat Technol. 2005;200:2080–2084.
  • Asl SM, Ganjali M, Karimi M. Surface modification of 316L stainless steel by laser-treated HA-PLA nanocomposite films toward enhanced biocompatibility and corrosion-resistance in vitro. Surf Coat Technol. 2019;363:236–243.
  • Amin Nakhi M, Ganjali M, Shirinzadeh H A. Sedaghat Ahangari Hossein Zadeh, Laser cladding of fluorapatite nanopowders on Ti6Al4V, Adv. Mater Lett 11 2019; 1–5
  • Chien C-S, Ko Y-S, Kuo T-Y, et al. Surface properties and in vitro bioactivity of fluorapatite/TiO2 coatings deposited on Ti substrates by Nd: YAG laser cladding. J Med Biol Eng. 2015;35:357–366.
  • Chien CS, Liu CW, Kuo TY, et al. Bioactivity of fluorapatite/alumina composite coatings deposited on Ti6Al4V substrates by laser cladding. Appl Phys A. 2016;122:303.
  • Chien CS, Liao TY, Hong TF, et al. Investigation into microstructural properties of fluorapatite Nd-YAG laser clad coatings with PVA and WG binders. Surf Coat Technol. 2011;205:3141–3146.
  • S. Zhai, M. Kanzaki, T. Katsura, E. Ito. Synthesis and characterization of strontium – calcium, γ-Ca3-xSrx(PO4)2 (0≤x≤2), 120 (2010) 348–350. https://doi.org/https://doi.org/10.1016/j.matchemphys.2009.11.010.
  • Cullity BD. Elements of X-ray diffraction’. 2nd ed. Reading, MA: Addison-Wesley Publishing Company, Inc.; 1978.
  • Webster TJ, Massa-Schlueter EA, Smith JL, et al. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials. 2004;25:2111–2121.
  • Pathania D, Gupta D, Agarwal S, et al. Fabrication of chitosan-g-poly (acrylamide)/CuS nanocomposite for controlled drug delivery and antibacterial activity. Mater Sci Eng C. 2016;64:428–435.
  • Jiao M-J, Wang -X-X. Electrolytic deposition of magnesium-substituted hydroxyapatite crystals on titanium substrate. Mater Lett. 2009;63:2286–2289.
  • Verberckmoes SC, Behets GJ, Oste L, et al. Effects of strontium on the physicochemical characteristics of hydroxyapatite. Calcif Tissue Int.2004;75:405–415.
  • Kim SR, Lee JH, Kim YT, et al. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials. 2003;24:1389–1398.
  • He Q, Liu X, Li B, et al. Expansivity and compressibility of strontium fluorapatite and barium fluorapatite determined by in situ X-ray diffraction at high-T/P conditions: significance of the M-site cations. Phys Chem Miner. 2013;40:349–360.
  • Gozalian A, Behnamghader A, Daliri M, et al. Synthesis and thermal behavior of Mg-doped calcium phosphate nanopowders via the sol gel method. Sci Iran. 2011;18:1614–1622.
  • Vo TH, Le TD, Pham TN, et al. Electrodeposition and characterization of hydroxyapatite coatings doped by Sr2+, Mg2+, Na+ and F− on 316L stainless steel. Adv Nat Sci Nanosci Nanotechnol. 2018;9:45001.
  • Denry I, Goudouri O-M, Fredericks DC, et al. Strontium-releasing fluorapatite glass-ceramic scaffolds: structural characterization and in vivo performance. Acta Biomater. 2018;75:463–471.
  • Li ZY, Lam WM, Yang C, et al. Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials. 2007;28:1452–1460.
  • Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010;6:1882–1894.
  • Bigi A, Boanini E, Capuccini C, et al. Strontium-substituted hydroxyapatite nanocrystals. Inorganica Chim Acta. 2007;360:1009–1016.
  • Penel G. HJPBE, Leroy G, Rey C, et al. No Title. J Mater M Aterials Med. 1997;8:271–276.
  • Kheradmandfard M, Fathi MH. Fabrication and characterization of nanocrystalline Mg-substituted fluorapatite by high energy ball milling, Ceram. Int. 2013;39:1651–1658.
  • Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn. 2005;5:893–905.
  • Cavalli M, Gnappi G, Montenero A, et al. Hydroxy- and fluorapatite films on Ti alloy substrates: sol-gel preparation and characterization. J Mater Sci. 2001;36:3253–3260.
  • Murugan R, Ramakrishna S. Aqueous mediated synthesis of bioresorbable nanocrystalline hydroxyapatite. J Cryst Growth. 2005;274:209–213.
  • Chen CW, Riman RE, TenHuisen KS, et al. Mechanochemical-hydrothermal synthesis of hydroxyapatite from nonionic surfactant emulsion precursors. J Cryst Growth. 2004;270:615–623.
  • Zahrani EM, Fathi MH, Alfantazi AM. Sol-gel derived nanocrystalline fluoridated hydroxyapatite powders and nanostructured coatings for tissue engineering applications. Metall Mater Trans A. 2011;42:3291–3309.
  • Kim H, Li L, Koh Y, et al. Sol–Gel preparation and properties of fluoride substituted hydroxyapatite powders. J Am Ceram Soc. 2004;87:1939–1944.
  • Zhou S, Zeng X, Hu Q, et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization. Appl Surf Sci. 2008;255:1646–1653.
  • Li H, Zhao X, Cao S, et al. Na-doped hydroxyapatite coating on carbon/carbon composites: preparation, in vitro bioactivity and biocompatibility. Appl Surf Sci. 2012;263:163–173.
  • Huang Y, Zhang X, Zhang H, et al. Fabrication of silver-and strontium-doped hydroxyapatite/TiO2 nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity. Ceram Int. 2017;43:992–1007.
  • Ghorbani F, Zamanian A, Sahranavard M. Mussel-inspired polydopamine-mediated surface modification of freeze-cast poly (ε-caprolactone) scaffolds for bone tissue engineering applications. Biomed Eng Tech. 2019;1.
  • Sampath Kumar TS, Madhumathi K, Rubaiya Y, et al. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections. Front Bioeng Biotechnol. 2015;3:59.
  • Ravi ND, Balu R, Sampath Kumar TS. Strontium‐substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties, J. Am Ceram Soc. 2012;95:2700–2708.
  • Stanić V, Radosavljević-Mihajlović AS, Živković-Radovanović V, et al. Synthesis, structural characterisation and antibacterial activity of Ag + -doped fluorapatite nanomaterials prepared by neutralization method. Appl Surf Sci. 2015;337:72–80.
  • Kannan S, Goetz-Neunhoeffer F, Neubauer J, et al. Synthesis and structural characterization of strontium-and magnesium-co-substituted β-tricalcium phosphate. Acta Biomater. 2010;6:571–576.
  • Landi E, Sprio S, Sandri M, et al. Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. Acta Biomater. 2008;4:656–663.
  • Lam WM, Pan HB, Li ZY, et al. Strontium-substituted calcium phosphates prepared by hydrothermal method under linoleic acid–ethanol solution, Ceram. Int. 2010;36:683–688.
  • Pan HB, Li ZY, Lam WM, et al. Solubility of strontium-substituted apatite by solid titration. Acta Biomater. 2009;5:1678–1685.
  • Wegman M, Eisenberg A, Curzon M, et al. Effects of fluoride, lithium, and strontium on intracellular polysaccharide accumulation in S. mutans and A. viscosus. J Dent Res. 1984;63:1126–1129.
  • Tredwin CJ, Young AM, E. A. A.b Neel G, et al. Knowles, Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: dissolution behaviour and biological properties after crystallisation. J Mater Sci Mater Med. 2014;25:47–53.
  • Peng S, Zhou G, Luk KD, et al. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem. 2009;23(1–3):165–174.
  • Fielding GA, Roy M, Bandyopadhyay A, et al. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater. 2012;8:3144–3152.
  • Yu N, Cai S, Wang F, et al. Microwave assisted deposition of strontium doped hydroxyapatite coating on AZ31 magnesium alloy with enhanced mineralization ability and corrosion resistance, Ceram. Int. 2017;43:2495–2503.
  • S. An, Y. Gao, J. Ling. Characterization of human periodontal ligament cells cultured on three-dimensional biphasic calcium phosphate scaffolds in the presence and absence of L-ascorbic acid, dexamethasone and β-glycerophosphate in vitro, Exp Ther Med. 10 (2015) 1387–1393. doi:https://doi.org/10.3892/etm.2015.2706.
  • Huang Y, Qiao H, Nian X, et al. Improving the bioactivity and corrosion resistance properties of electrodeposited hydroxyapatite coating by dual doping of bivalent strontium and manganese ion. Surf Coat Technol. 2016;291:205–215.
  • Huang Y, Hao M, Nian X, et al. Strontium and copper co-substituted hydroxyapatite-based coatings with improved antibacterial activity and cytocompatibility fabricated by electrodeposition. Ceram Int. 2016;42:11876–11888.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.