Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 8
232
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Cancer Therapy Using a Targeted Magnetoliposomes Encapsulated Doxorubicin Assisted Ultrasound

, , &
Pages 858-865 | Received 04 Dec 2020, Accepted 07 Mar 2021, Published online: 29 Mar 2021

References

  • Peters GJ, Van Der Wilt CL, Van Moorsel CJA, et al. Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacol Ther. 2000;87(2–3):227–253.
  • Alexiou C, Jurgons R, Schmid RJ, et al. Magnetic drug targeting – biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target. 2003;11(3):139–149.
  • Gao H, Bai Y, Chen L, et al. Self-assembly nanoparticles for overcoming multidrug resistance and imaging-guided chemo-photothermal synergistic cancer therapy. Int J Nanomedicine. 2020;15:809.
  • Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs – a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113(1–3):151–170.
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–177.
  • Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci. 2013;48(3):416–427.
  • Ansari M, Eslami H. Preparation and study of the inhibitory effect of nano-niosomes containing essential oil from Artemisia absinthium on amyloid fibril formation. Nanomed J. 2020;7(3):243–250.
  • Mirzaie Z, Ansari M, Kordestani SS, et al. Preparation and characterization of curcumin‐loaded polymeric nanomicelles to interference with amyloidogenesis through glycation method. Biotechnol Appl Biochem. 2019;66(4):537–544.
  • Saberi J, Ansari M, Ebrahimi Hoseinzadeh B, et al. Chitosan-polyacrylic acid hybrid nanoparticles as novel tissue adhesive: synthesis and characterization. Fibers Polym. 2018;19(12):2458–2464.
  • Ansari M, Habibi-Rezaei M, Salahshour-Kordestani S, et al. An investigation on the effect of β-CD modified Fe3O4 magnetic nanoparticles on aggregation of amyloid b peptide (25–35). Mater Technol. 2016;31(6):315–321.
  • Ansari M, Habibi-Rezaei M, Salahshour-Kordestani S, et al. Prevention of serum albumin glycation/fibrillation by β.-cyclodextrin functionalized magnetic nanoparticles. Protein Pept Lett. 2015;22(7):594–600.
  • Ansari M, Salahshour-Kordestani S, Habibi-Rezaei M, et al. Synthesis and characterization of acylated polycaprolactone (PCL) nanospheres and investigation of their influence on aggregation of amyloid proteins. J Macromol Sci Part B. 2015;54(1):71–80.
  • Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310–1316.
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):1–12.
  • Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol. 2008;26(1):57–64.
  • Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2003;8(24):1112–1120.
  • Zhang Z, Wang J, Chen C. Near‐infrared light‐mediated nanoplatforms for cancer thermo‐chemotherapy and optical imaging. Adv Mater. 2013;25(28):3869–3880.
  • Wang Y, Wei G, Zhang X, et al. A step‐by‐step multiple stimuli‐responsive nanoplatform for enhancing combined chemo‐photodynamic therapy. Adv Mater. 2017;29(12):1605357.
  • Nesbitt H, Sheng Y, Kamila S, et al. Gemcitabine loaded microbubbles for targeted chemo-sonodynamic therapy of pancreatic cancer. J Control Release. 2018;279:8–16.
  • Logan K, Foglietta F, Nesbitt H, et al. Targeted chemo-sonodynamic therapy treatment of breast tumours using ultrasound responsive microbubbles loaded with paclitaxel, doxorubicin and Rose Bengal. Eur J Pharm Biopharm. 2019;139:224–231.
  • Misra RDK. Core–shell magnetic nanoparticle carrier for targeted drug delivery: challenges and design. Mater Technol. 2010;25(3–4):118–126.
  • Misra RDK. Magnetic nanoparticle carrier for targeted drug delivery: perspective, outlook and design. Mater Sci Technol. 2008;24(9):1011–1019.
  • Zhang J, Misra RDK. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomater. 2007;3(6):838–850.
  • Zhang JL, Srivastava RS, Misra RDK. Core−shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir. 2007;23(11):6342–6351.
  • Kolarova H, Tomankova K, Bajgar R, et al. Photodynamic and sonodynamic treatment by phthalocyanine on cancer cell lines. Ultrasound Med Biol. 2009;35(8):1397–1404.
  • Yousefi E, Javadpour S, Ansari M & Eslami H. Sonodynamic therapy of cancer using a novel TiO2-based nanoparticles, Mater Technol. 2020; DOI:https://doi.org/10.1080/10667857.2020.1775409.
  • Endo S, Kudo N, Yamaguchi S, et al. Porphyrin derivatives-mediated sonodynamic therapy for malignant gliomas in vitro. Ultrasound Med Biol. 2015;41(9):2458–2465.
  • Wan G-Y, Liu Y, Chen B-W, et al. Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol Med. 2016;13(3):325.
  • Costley D, Mc Ewan C, Fowley C, et al. Treating cancer with sonodynamic therapy: a review. Int J Hyperthermia. 2015;31(2):107–117.
  • Cheng J, Sun X, Guo S, et al. Effects of 5-aminolevulinic acid-mediated sonodynamic therapy on macrophages. Int J Nanomedicine. 2013;8:669.
  • Kemp JA, Shim MS, Heo CY, et al. “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev. 2016;98:3–18.
  • Koo H, Huh MS, Sun I-C, et al. In vivo targeted delivery of nanoparticles for theranosis. Acc Chem Res. 2011;44(10):1018–1028.
  • Gindy ME, Prud’homme RK. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Deliv. 2009;6(8):865–878.
  • Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin. Clin Pharmacokinet. 2003;42(5):419–436.
  • Iida H, Takayanagi K, Nakanishi T, et al. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci. 2007;314(1):274–280.
  • Dave V, Gupta A, Singh P, et al. Synthesis and characterization of celecoxib loaded PEGylated liposome nanoparticles for biomedical applications. Nano Struct Nano Obj. 2019;18:100288.
  • Askari A, Tajvar S, Nikkhah M, et al. Synthesis, characterization and in vitro toxicity evaluation of doxorubicin-loaded magnetoliposomes on MCF-7 breast cancer cell line. J Drug Delivery Sci Technol. 2020;55:101447.
  • Yang S, Wang P, Wang X, et al. Efficacy of combined therapy with paclitaxel and low-level ultrasound in human chronic myelogenous leukemia cell line K562. J Drug Target. 2013;21(9):874–884.
  • Shen S, Wu L, Liu J, et al. Core–shell structured Fe3O4@ TiO2-doxorubicin nanoparticles for targeted chemo-sonodynamic therapy of cancer. Int J Pharm. 2015;486(1–2):380–388.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.