Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 11
417
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Facile construction of novel ZnO and TiO2 combined g-C3N4 nanocomposite for superior visible-light photocatalytic organic pollutant degradation

, , , , , , ORCID Icon, , , & show all
Pages 1651-1664 | Received 29 Apr 2021, Accepted 10 Aug 2021, Published online: 23 Aug 2021

References

  • Zhang C, Li Y, Shuai D, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: a review. Chemosphere. 2019;214:462–479. https://linkinghub.elsevier.com/retrieve/pii/S0045653518317995
  • Kumar S, Karthikeyan S, Lee AF, g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts. Internet]. 2018;8(2):74. http://www.mdpi.com/2073-4344/8/2/74
  • Wu G, Xing W, Fabrication of ternary visible-light-driven semiconductor photocatalyst and its effective photocatalytic performance. Mater Technol. Internet]. 2019;34(5):292–300.
  • Masih D, Ma Y, Rohani S, et al. Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Appl Catal B Environ Internet]. 2017;206:556–588.
  • Konstas PS, Konstantinou I, Petrakis D, et al. Synthesis, characterization of g-C3 N4/SrTiO3 heterojunctions and photocatalytic activity for organic pollutants degradation. Catalysts. 2018;8(11):554.
  • Sabry RS, Aziz WJ, Rahmah MI, Enhanced photocatalytic activity of Ag and Fe2O3co-doped ZnO nanostructure under visible light irradiation. Mater Technol. Internet]. 2020;35(6):326–334.
  • Ong WJ, Tan LL, Ng YH, et al. Graphitic carbon nitride (g-C3N4)-Based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev. 2016;116:7159–7329.
  • Niu J, Dai P, Wang K, et al. Enhanced visible-light photocatalytic activity of BiOI–MWCNT composites synthesised via rapid and facile microwave hydrothermal method. Mater Technol. Internet]. 2019(9);34:506–514. https://www.tandfonline.com/doi/full/10.1080/10667857.2019.1586086
  • Mousavi M, Habibi-Yangjeh A, Pouran SR, et al. Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J Mater Sci Internet]. 2018;29:1719–1747.
  • Zhang S, Li H, Yang Z, Synthesis, structural characterization and evaluation of a novel floating metal-free photocatalyst based on g-C3N4 grafted expanded perlite for the degradation of dyes. Mater Technol. Internet]. 2018;33(1):1–9. https://www.tandfonline.com/doi/full/10.1080/10667857.2017.1367148
  • Adekoya DO, Tahir M, Amin NAS, et al. g-C3N4/(Cu/TiO2) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light. J CO2 Util. 2017;18:261–274.
  • Shao B, Liu Z, Zeng G, et al. Nitrogen-Doped Hollow mesoporous carbon spheres modified g-C3N4/Bi2O3 direct dual semiconductor photocatalytic system with enhanced antibiotics degradation under visible light. ACS Sustainable Chem Eng. 2018;6(12):16424–16436.
  • He R, Zhou J, Fu H, et al. Room-temperature in situ fabrication of Bi 2 O 3 /g-C 3 N 4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Appl Surf Sci. 2018;430:273–282.
  • Sundaram IM, Kalimuthu S, Ponniah GP, et al. Highly active ZnO modified g-C3N4 nanocomposite for dye degradation under UV and visible light with enhanced stability and antimicrobial activity. Compos Commun Internet]. 2017;5:64–71.
  • Moradi S, Isari AA, Hayati F, et al. Co-implanting of TiO2 and liquid-phase-delaminated g-C3N4 on multi-functional graphene nanobridges for enhancing photocatalytic degradation of acetaminophen. Chem Eng J Internet]. 2021;414:128618.https://www.degruyter.com/document/doi/10.1515/gps-2017-0077/html
  • Manalu SP, Natarajan TS, De Guzman M, et al. Synthesis of ternary g-C3N4/Bi2MoO6/TiO2 nanotube composite photocatalysts for the decolorization of dyes under visible light and direct sunlight irradiation. Green Process Synth [Internet]. 2018;7(6):493–505. https://www.degruyter.com/document/doi/10.1515/gps-2017-0077/html
  • Moradi M, Hasanvandian F, Isari AA, et al. CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin. Appl Catal B Environ Internet]. 2021;285:119838. https://www.sciencedirect.com/science/article/pii/S0926337320312558
  • Li J, Yin Y, Liu E, et al. In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation. J Hazard Mater. 2017;321:183–192.
  • Babaei AA, Golshan M, Kakavandi B, et al. A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@carbon. Process Saf Environ Prot Internet]. 2021;149:35–47. https://www.sciencedirect.com/science/article/abs/pii/S0957582020318231
  • Cardoza-Contreras MN, Vásquez-Gallegos A, Vidal-Limon A, et al. Photocatalytic and antimicrobial properties of Ga Doped and Ag Doped ZnO nanorods for water treatment. Catalysts. 2019;9(2):1–12.
  • He Y, He Q, Liu Z, et al. Controllable preparation and improved performance of TiO 2 photocatalysts with various structures. Mater Technol. Internet]. 2020;35(1):1–10.
  • Xie T, Xu L, Liu C, et al. A novel magnetic heterojunction photocatalyst TiO2/SrFe12O19: synthesis strategy, photocatalytic activity, and unprecedented migration mechanism of photoexcited charge carrier. Mater Technol. Internet]. 2018;33(9):582–591.
  • Kondo K, Murakami N, Ye C, et al. Development of highly efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon nitride. Appl Catal B Environ. 2013;142–143:362–367.
  • Wei X, Liu H, Li T, et al. Three-dimensional flower heterojunction g-C3N4/Ag/ZnO composed of ultrathin nanosheets with enhanced photocatalytic performance. J Photochem Photobiol A Internet]. 2020;390:112342.
  • Faisal M, Ismail AA, Harraz FA, et al. Fabrication of highly efficient TiO2/C3N4 visible light driven photocatalysts with enhanced photocatalytic activity. J Mol Struct. 2018;1173:428–438.
  • Akhundi A, Habibi-Yangjeh A, et al. Facile preparation of novel quaternary g-C3N4/Fe3O4/AgI/Bi2S3 nanocomposites: magnetically separable visible-light-driven photocatalysts with significantly enhanced activity. RSC Adv. 2016;6(108):106572–106583.
  • Xu Q, Zhao P, Shi YK, et al. Preparation of a g-C3N4/Co3O4/Ag2O ternary heterojunction nanocomposite and its photocatalytic activity and mechanism. New J Chem. 2020;44(16):6261–6268. Internet]. ;:. Available from.
  • Darkwah WK, Ao Y, Mini review on the structure and properties (Photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications. Nanoscale Res Lett. Internet]. 2018;13(1):388.
  • Gao H, Liu Y, Wang L, et al. Synthesis of a reticular porous MoS2/g-C3N4 heterojunction with enhanced visible light efficiency in photocatalytic degradation of RhB. Res Chem Intermed. 2019;45(7):3687–3703.
  • Zhang D, Cui S, Yang J, et al. Preparation of Ag2O/g-C3N4/Fe3O4 composites and the application in the photocatalytic degradation of Rhodamine B under visible light. J Alloys Compd Internet]. 2017;708:1141–1149. https://linkinghub.elsevier.com/retrieve/pii/S0925838817308757
  • Balu S, Velmurugan S, Palanisamy S, et al. Synthesis of α-Fe2O3 decorated g-C3N4/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media. J Taiwan Inst Chem Eng. 2019;99:258–267.
  • Jiang N, Geng H, Qiao Y, et al. A visible-light-active CuInSe2:Zn/g-C3N4/TiO2 nanowires for photoelectrocatalytic bactericidal effects. New J Chem. 2020;44(6):2303–2311.
  • Tu X, Zhou R, Guo H, et al. Heterojunction semiconductor g-C3N4/BiVO4 with an enhanced photocatalytic activity based on the effective chemical bonding. Mater Technol. Internet]. 2019;34(14):827–837.
  • Lin P, Hu H, Lv H, et al. Hybrid reduced graphene oxide/TiO2/graphitic carbon nitride composites with improved photocatalytic activity for organic pollutant degradation. Applied Physics A: Materials Science and Processing. 2018; 124.
  • Wang W, An T, Li G, et al. Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation. Appl Catal B Environ Internet]. 2017;217:570–580.
  • Zeng J, Song T, Lv M, et al. Plasmonic photocatalyst Au/g-C3N4/NiFe2O4 nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution. RSC Adv. 2016;6(60):54964–54975.
  • Devarayapalli KC, Lee K, Nam ND, et al. Microwave synthesized nano-photosensitizer of CdS QD/MoO3–OV/g–C3N4 heterojunction catalyst for hydrogen evolution under full-spectrum light. Ceram Int. Internet]. 2020;46(18):28467–28480. https://www.sciencedirect.com/science/article/pii/S0272884220323695
  • Mohamadi Zalani N, Koozegar Kaleji B, Mazinani B, Synthesis and characterisation of the mesoporous ZnO-TiO 2 nanocomposite; Taguchi optimisation and photocatalytic methylene blue degradation under visible light. Mater Technol. Internet]. 2020;35(5):281–289. https://www.tandfonline.com/doi/abs/10.1080/10667857.2019.1678087?journalCode=ymte20
  • Wu MH, Li L, Xue YC, et al. Fabrication of ternary GO/g-C3N4/MoS2 flower-like heterojunctions with enhanced photocatalytic activity for water remediation. Appl Catal B Environ Internet]. 2018;228:103–112.
  • Liu C, Mao D, Pan J, et al. Fabrication of highly efficient heterostructured Ag-CeO2/g-C3N4 hybrid photocatalyst with enhanced visible-light photocatalytic activity. J Rare Earths. 2019;37(12):1269–1278.
  • Kumar S, Kumar A, Kumar A, et al. Highly efficient visible light active 2D-2D nanocomposites of N-ZnO-g-C3N4 for photocatalytic degradation of diverse industrial pollutants. ChemistrySelect Internet]. 2018;3(6):1919–1932.
  • Ö T, Simsek EB, Construction of novel Zn2TiO4/g-C3N4 Heterojunction with efficient photodegradation performance of tetracycline under visible light irradiation. Environ Sci Pollut Res. Internet]. 2021;28(8):10005–10017.
  • Mo Z, Xu H, She X, et al. Constructing Pd/2D-C 3 N 4 composites for efficient photocatalytic H 2 evolution through nonplasmon-induced bound electrons. Appl Surf Sci. 2019;467-468(467–468):151–157.
  • Sun L, Du T, Hu C, et al. Antibacterial activity of graphene Oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustainable Chem Eng. Internet]. 2017;5:8693–8701.
  • Tan Y, Shu Z, Zhou J, et al. One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Appl Catal B Environ. 2018;230:260–268.
  • Liu H, Li D, Yang X, et al. Fabrication and characterization of Ag3PO4/TiO2heterostructure with improved visible-light photocatalytic activity for the degradation of methyl orange and sterilization of E.coli. Mater Technol. Internet]. 2019;34(4):192–203.
  • Ren J, Wu YZ, Zou H, et al. Synthesis of a novel CeVO4/graphitic C3N4 composite with enhanced visible-light photocatalytic property. Mater Lett. 2016;183:219–222.
  • Liang W, Tang G, Zhang H, et al. Core–shell structured AgBr incorporated g-C 3 N 4 nanocomposites with enhanced photocatalytic activity and stability. Mater Technol. Internet]. 2017;32(11):675–685
  • Li J, Zhou M, Ye Z, et al. Enhanced photocatalytic activity of g-C3N4–ZnO/HNT composite heterostructure photocatalysts for degradation of tetracycline under visible light irradiation. RSC Adv. 2015;5(111):91177–91189.
  • Monga D, Basu S, Enhanced photocatalytic degradation of industrial dye by g-C 3 N 4 /TiO 2 nanocomposite: role of shape of TiO 2. Adv Powder Technol. Internet]. 2019;30(5):1089–1098.
  • Zhang H, Wu W, Li Y, et al. Enhanced photocatalytic degradation of ciprofloxacin using novel C-dot@Nitrogen deficient g-C 3 N 4 : synergistic effect of nitrogen defects and C-dots. Appl Surf Sci. 2019;465:450–458.
  • Lu Y, Xu L, Liu C, et al. Synthesis and photocatalytic activity of composite magnetic photocatalyst Mnx Zn 1-x Fe2O4/α-Bi2O3. Mater Technol. Internet]. 2019;34(5):301–311.
  • Zhong Z, Xu R, He H, et al. Construction of 2D g-C 3 N 4 /MoS 2 heterojunction photocatalyst for enhanced degradation of pollution under visible light. Desalin Water Treat. 2019;137:234–242.
  • Yang Z, Yan J, Lian J, et al. g-C3N4/TiO2 nanocomposites for degradation of ciprofloxacin under visible light irradiation. ChemistrySelect. 2016;1(18):5679–5685.
  • Baia L, Orbán E, Fodor S, et al. Preparation of TiO2/WO3 composite photocatalysts by the adjustment of the semiconductors’ surface charge. Mater Sci Semicond Process. 2016;42:66–71.
  • Liu Y, Chen P, Chen Y, et al. In situ ion-exchange synthesis of SnS2/g-C3N4 nanosheets heterojunction for enhancing photocatalytic activity. RSC Adv. 2016;6(13):10802–10809.
  • Zhu L, Li H, Liu Z, et al. Synthesis of the 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity. J Phys Chem C. Internet]. 2018;122(17):9531–9539.
  • Pan Y, Yin M, Fang H, et al. Facile construction of ternary ZnO/CdS/GO heterostructure with boosting and stable photocatalytic performance towards organic dyes degradation. Mater Technol. [Internet]. 2020;1–11. https://www.tandfonline.com/doi/full/10.1080/10667857.2020.1864193
  • Yao Y, Cai Y, Lu F, et al. Magnetic ZnFe2O4–C3N4 hybrid for photocatalytic degradation of aqueous organic pollutants by visible light. Ind Eng Chem Res. 2014;53(44):17294–17302.
  • Liao T, Huang P, Song H, et al. La(OH)3-modified magnetic sodium carboxymethyl cellulose for sequential removal of pollutants: adsorption of phosphate and subsequent photocatalytical reduction of Cr(VI). Environ Sci Pollut Res. Internet]. 2020;27:40346–40354. https://pubmed.ncbi.nlm.nih.gov/32666450/
  • Lu P, Hu X, Li Y, et al. One-step preparation of a novel SrCO3/g-C3N4 nano-composite and its application in selective adsorption of crystal violet. RSC Adv. 2018;8(12):6315–6325.
  • Nguyen V-H, Mousavi M, Ghasemi JB, et al. Synthesis, characterization, and photocatalytic performance of Ag/AgFeO2 decorated on g-C3N4-nanosheet under the visible light irradiation. J Taiwan Inst Chem Eng. 2020;115:279–292.
  • Liu H, Zhu X, Han R, et al. Study on the internal electric field in the Cu2O/g-C3N4 p–n heterojunction structure for enhancing visible light photocatalytic activity. New J Chem. 2020;44(5):1795–1805.
  • Ghasemipour P, Fattahi M, Rasekh B, et al. Developing the Ternary ZnO Doped MoS2 nanostructures grafted on CNT and Reduced Graphene Oxide (RGO) for photocatalytic degradation of aniline. Sci Rep. Internet]. 2020;10(1):4414.
  • Zhao W, Wei Z, He H, et al. Supporting 1-D AgVO3 nanoribbons on single layer 2-D graphitic carbon nitride ultrathin nanosheets and their excellent photocatalytic activities. Appl Catal A Gen. 2015;501:74–82.
  • Chaudhary D, Vankar VD, Khare N, et al. Noble metal-free g-C3N4/TiO2/CNT ternary nanocomposite with enhanced photocatalytic performance under visible-light irradiation via multi-step charge transfer process. Solar Energy Internet]. 2017;158:132–139.
  • Li C, Sun Z, Xue Y, et al. A facile synthesis of g-C3N4/TiO2 hybrid photocatalysts by sol-gel method and its enhanced photodegradation towards methylene blue under visible light. Adv Powder Technol. Internet]. 2016;27(2):330–337.
  • Khan ME, Han TH, Khan MM, et al. Environmentally sustainable fabrication of Ag@g-C3N4 nanostructures and their multifunctional efficacy as antibacterial agents and photocatalysts. ACS Appl Nano Mater. 2018;1(6):2912–2922.
  • Ji H, Jing X, Xu Y, et al. Magnetic g-C 3 N 4 /NiFe 2 O 4 hybrids with enhanced photocatalytic activity. RSC Adv. 2015;5(71):57960–57967.
  • Zhang B, Wang Q, Zhuang J, et al. Molten salt assisted in-situ synthesis of TiO2/g-C3N4 composites with enhanced visible-light-driven photocatalytic activity and adsorption ability. J Photochem Photobiol A Internet]. 2018;362:1–13.
  • Li Y, Wu S, Huang L, et al. G-C3N4 modified Bi2O3 composites with enhanced visible-light photocatalytic activity. J Phys Chem Solids Internet]. 2015;76:112–119.
  • Wang H, Shen Q, You Z, et al. Preparation of nanoscale-dispersed g-C3N4/graphene oxide composite photocatalyst with enhanced visible-light photocatalytic activity. Mater Lett Internet]. 2018;217:143–145.
  • Hou J, Zhou J, Liu Y, et al. Constructing Ag2O nanoparticle modified TiO2 nanotube arrays for enhanced photocatalytic performances. J Alloys Compd Internet]. 2020;849:156493.
  • Fan T, Chen C, Tang Z, et al. Synthesis and characterization of g-C3N4/BiFeO3 composites with an enhanced visible light photocatalytic activity. Mater Sci Semicond Process Internet]. 2015;40:439–445.
  • Liu H, Zhang ZG, He HW, et al. One-step synthesis heterostructured g-C3N4/TiO2 composite for rapid degradation of pollutants in utilizing visible light. Nanomaterials. Internet]. 2018;8(10):842.
  • Surikanti GR, Bajaj P, Sunkara MV, et al. g-C3N4-Mediated synthesis of Cu 2 O to obtain porous composites with improved visible light photocatalytic degradation of organic dyes. ACS Omega. Internet]. 2019;4(17):17301–17316.
  • Ren J, Wu YZ, Dai Y, et al. Enhanced visible-light-driven photocatalytic activity of CeVO4/graphitic C3N4 photocatalysts for organic dye degradation. Mater Technol. Internet]. 2017;32(9):574–583.
  • Chang F, Zheng J, Wang X, et al. Heterojuncted non-metal binary composites silicon carbide/g-C3N4 with enhanced photocatalytic performance. Mater Sci Semicond Process Internet]. 2018;75:183–192.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.