Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 11
141
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Physical and in-vitro biological evaluations of plant based nano cellulose loaded injectable bone substitutes

, &
Pages 1742-1754 | Received 25 Jun 2021, Accepted 04 Sep 2021, Published online: 23 Sep 2021

References

  • Schmitz JP, Hollinger JO, Milam SB. Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral and Maxillofacial Surgery. 1999;57(9):1122–1126
  • LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. 2002;Clinical Orthopaedics and Related Research. 395:81–98.
  • Sarkar MR, Wachter N, Patka P, et al. First histological observations on the incorporation of a novel calcium phosphate bone substitute material in human cancellous bone. J Biomed. Mater.Res. 2000;58(3):329–334
  • Hofman MP, Mohammed AR, Perrie Y, et al. High-strength resorbable brushite bone cement with controlled drug releasing capabilities. Acta Biomater. 2009;95(1):43–49.
  • Dasgupta S, Mondal S, Ray S, et al. Hydroxyapatite-collagen nanoparticles reinforced polyanhydride based injectable paste for bone substitution: effect of dopant addition in vitro. J Biomater Sci Polymer Edition. 2021;32(10):1312–1336.
  • Apelt D, Theiss F, El-Warrak AO, et al. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials. 2004;25(7–8):1439–1451.
  • Mirtchi AA, Lemaitre J, Munting E. Calcium-phosphate cements-action of setting regulators on the properties of the beta-tricalcium phosphate monocalcium phosphate cements. Biomaterials. 1989;10(9):634–638.
  • Han B, Ma P-W, Zhang -L-L, et al. β-TCP/MCPM-based premixed calcium phosphate cements. Acta Biomater. 2009;5(8):3165–3177.
  • Bohner M, Merkle HP, Lemaitre J. In vitro aging of a calcium phosphate cement. J Mater Sci-Mater Med. 2000;11:155–162.
  • Luo J, Engqvist H. Persson. A ready-to-use acidic, brushite-forming calcium phosphate cement. Acta Biomater. 2018;81:304–314.
  • Martson M, Viljanto J, Hurme T, et al. Biocompatibility of cellulose sponge with bone. Eur Surg Res. 1998;30(6):426–432.
  • Poustis J, Baquey C, Chauveaux D. Mechanical properties of cellulose in orthopaedic devices and related environments. Clin. Mater. 1994;16(2):119–124
  • Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941–3994.
  • Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale. 2011;3:71–85.
  • Wicklein B, Salazar-Alvarez G. Functional hybrids based on biogenic nanofibrils and inorganic nanomaterials. J Mater Chem A. 2013;1:5469–5478.
  • Habibi Y, Lucia LA, Rojas OJ. Cellulose Nanocrystals: chemistry, Self-Assembly, and Applications. Chem Rev. 2010;110(6):3479–3500.
  • Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale. 2012;4:3274–3294.
  • Leung ACW, Lam E, Chong J, et al. Reinforced plastics and aerogels by nanocrystalline cellulose. J Nanopart Res. 2013;15:1636–1660. 10.1007/s11051-013-1636-z
  • Yang J, Han CR, Zhang XM, et al. Cellulose Nanocrystals Mechanical Reinforcement in Composite Hydrogel. Macromolecules. 2014;47(12):4077–4086.
  • Gwon JG, Cho HJ, Chun SJ, et al. Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly(lactic acid) as a base matrix. RSC Adv. 2016;6:73879–73886.
  • ISO 9917-1. Dentistry-water-based cements—part 1: powder/liquid acid-based cements. Geneva Switzerland: ISO; 2003.
  • Liu C, Wei N, Wang S, et al. Preparation and characterization superporous hydroxypropyl methylcellulose gel beads. Carbohydrate Polymers. 2009;78(1):1–4
  • Tripathi G, Raja N, Yun HS. Effect of direct loading of phytoestrogens into calcium phosphate scaffolds on osteoporotic bone tissue regeneration. 2015;J. of Mater. Chem. B. 3:8694–8703.
  • Tripathi G, Basu B. A porous hydroxyapatite scaffold for bone tissue engineering: physico-mechanical and biological evaluations. Ceram Int. 2012;38(1):341–349.
  • Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues - Wheat straw and soy hulls. Bioresour Technol. 2008;99(6):1664–1671.
  • Nascimento DM, Almeida JS, Vale MS, et al. A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part I: proposition of technological pathways. Ind Crops Prod. 2016;93(25):66–75.
  • Deepa B, Abraham E, Cordeiro N, et al. Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose. 2015;22(2):1075–1090.
  • Kamphunthong W, Hornsby P, Sirisinha K. Isolation of cellulose nanofibers from para rubberwood and their reinforcing effect in poly(vinyl alcohol) composites. Journal of Applied Polymer Science. 2012;125(2):1642–1651.
  • Arifuzzaman SM, Rohani S. Experimental study of brushite precipitation. Journal of Crystal Growth. 2004;267(3–4):624–634.
  • Dalal PV, Saraf KB. Growth and study of barium oxalate single crystals in agar gel. Bull Mater Sci. 2006;29(5):421–425.
  • Rajendran K, Dale Keefe C. Growth and characterization of calcium hydrogen phosphate dihydrate crystals from single diffusion gel technique. Cryst Res Technol. 2010;45(9):939–945.
  • Joshi VS, Joshi MJ. FTIR spectroscopic, thermal and growth morphological studies of calcium hydrogen phosphate dihydrate crystals. Cryst Res Technol. 2003;38(9):817–821.
  • Pu Z, Fan H, Zhang C, et al. Effect of bioglass on in vitro bioactivity and cytocompatibility of biphasic α-tricalcium phosphate/gypsum cements. Mater Technol. 2020;36(7):400–411.
  • Zhang Q, Lei Z, Peng M, et al. Enhancement of mechanical and biological properties of calcium phosphate bone cement by incorporating bacterial cellulose. Mater Technol. 2019;34(13):800–806.
  • Tokudome Y, Miyasaka A, Nakanishi K, et al. Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol–gel reaction from ionic precursors. J Sol-Gel Sci Tech. 2000;57(3):269–278
  • Aberg J, Brisby H, Henriksson HB, et al. Premixed acidic calcium phosphate cement: characterization of strength and microstructure. J Biomed Mater Research Part B: App Biomater. 2010;93B(2):436–441
  • Tamimi F, Torres J, Kathan C, et al. Bone regeneration in rabbit calvaria with novel monetite granules. J Biomed Mater Research Part A. 2008;87A(4):980–985
  • Reichert JC, Quent VMC, Burke LJ, et al. Mineralized human primary osteoblast matrices as a model system to analyse interactions of prostate cancer cells with the bone microenvironment. Biomaterials. 2010;31(31):7928–7936.
  • Bouleftour W, Juignet L, Bouet G, et al. The role of the SIBLING, Bone Sialoprotein in skeletal biology contribution of mouse experimental genetics. In Matrix Biol. Vols. 52-54.Europe PMC. 2016. p. 60–77.
  • Reilly GC, Radin S, Chen AT, et al. Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass. Biomaterials. 2007;28(28):4091–4097.
  • Viereck V, Siggelkow H, Tauber S, et al. Differential regulation of Cbfa1/Runx2 and osteocalcin gene expression by vitamin-D3, dexamethasone, and local growth factors in primary human osteoblasts. J Cell Biochem. 2002;86(2):348–356.
  • Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25(6):1384–1392.
  • Zhang N, Molenda JA, Fournelle JH, et al. Effects of pseudowollastonite (CaSiO3) bioceramic on in vitro activity of human mesenchymal stem cells. Biomaterials. 2010;31(30):7653–7665.
  • Yefang Z, Hutmacher DW, Varawan S-L, et al. Comparison of Human alveolar osteoblasts cultured on polymer-ceramic composite scaffolds and tissue culture plates. International J Oral and Maxillofacial Surgery. 2007;36(2):137–145

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.