Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 11
178
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Riboflavin mediated photo-illumination for bonding zirconia to tooth structure

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1766-1777 | Received 30 Jul 2021, Accepted 12 Sep 2021, Published online: 01 Oct 2021

References

  • Spencer P, Ye Q, Song L, et al. Threats to adhesive/dentin interfacial integrity and next generation bio-enabled multifunctional adhesives. J Biomed Mater Res Part B. 2019 Nov;107(8):2673–2683.
  • Kermanshahi S, Santerre JP, Cvitkovitch DG, et al. Biodegradation of resin-dentin interfaces increases bacterial microleakage. J Dent Res. 2010 Sep;89(9):996–1001.
  • Featherstone JD. Dental caries: a dynamic disease process. Aust Dent J. 2008 Sep;53(3):286–291.
  • Li S, Dong S, Xu W, et al. Antibacterial hydrogels. Adv Sci. 2018 5;5(5):1700527.
  • Ding J, Zhang J, Li J, et al. Electrospun polymer biomaterials. Prog Polym Sci. 2019 Mar;1(90):1–34.
  • Issa MC, Manela-Azulay M. Photodynamic therapy: a review of the literature and image documentation. An Bras Dermatol. 2010;85(4):501–511.
  • Garcez AS, Arantes-Neto JG, Sellera DP, et al. Effects of antimicrobial photodynamic therapy and surgical endodontic treatment on the bacterial load reduction and periapical lesion healing. Three years follow up. Photodiagnosis Photodyn Ther. 2015 Dec 1;12(4):575–580.
  • Martinez De Pinillos Bayona A, Mroz P, Thunshelle C, et al. Design features for optimization of tetrapyrrole macrocycles as antimicrobial and anticancer photosensitizers. Chem Biol Drug Des. 2017 Feb;89(2):192–206.
  • Baptista MS, Cadet J, Di Mascio P, et al. Type I and Type II photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochem Photobiol. 2017 Jul;93(4):912–919.
  • Carrera ET, Dias HB, Corbi SC, et al. The application of antimicrobial photodynamic therapy (aPDT) in dentistry: a critical review. Laser physics. 2016 Nov 9; 26(12):123001.
  • Kou J, Dou D, Yang L. Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget. 2017 Oct 6;8(46):81591.
  • Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016 Feb 15;473(4):347–364.
  • Hamblin MR. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol. 2016 Oct;33(33):67–73.
  • Kharkwal GB, Sharma SK, Huang YY, et al. Photodynamic therapy for infections: clinical applications. Lasers Surg Med. 2011 Sep;43(7):755–767.
  • Garcez AS, Nunez SC, Hamblim MR, et al. Photodynamic therapy associated with conventional endodontic treatment in patients with antibiotic-resistant microflora: a preliminary report. J Endod. 2010 Sep 1;36(9):1463–1466.
  • Gursoy H, Ozcakir-Tomruk C, Tanalp J, et al. Photodynamic therapy in dentistry: a literature review. Clin Oral Investig. 2013 May;17(4):1113–1125.
  • Muhammad OH, Chevalier M, Rocca JP, et al. Photodynamic therapy versus ultrasonic irrigation: interaction with endodontic microbial biofilm, an ex vivo study. Photodiagnosis Photodyn Ther. 2014 Jun 1;11(2):171–181.
  • Sabino CP, Garcez AS, Núñez SC, et al. Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals. Lasers Med Sci. 2015 Aug;30(6):1657–1665.
  • Garcez AS, Arantes-Neto JG, Sellera DP, et al. Effects of antimicrobial photodynamic therapy and surgical endodontic treatment on the bacterial load reduction and periapical lesion healing. Three years follow up. Three years follow up. Photodiagnosis Photodyn Ther. 2015 Dec 1;12(4):575–580.
  • Asnaashari M, Mojahedi SM, Asadi Z, et al. A comparison of the antibacterial activity of the two methods of photodynamic therapy (using diode laser 810 nm and LED lamp 630 nm) against Enterococcus faecalis in extracted human anterior teeth. Photodiagnosis Photodyn Ther. 2016 Mar 1;13:233–237.
  • Vohra F, Akram Z, Bukhari IA, et al. Short-term effects of adjunctive antimicrobial photodynamic therapy in obese patients with chronic periodontitis: a randomized controlled clinical trial. Photodiagnosis Photodyn Ther. 2018 Mar;107(8):2673–2683.
  • Eroglu CN, Tunc SK, Erten R, et al. Clinical and histological evaluation of the efficacy of antimicrobial photodynamic therapy used in addition to antibiotic therapy in pericoronitis treatment. Photodiagnosis Photodyn Ther. 2018 Mar;21(21):416–420.
  • Simionato MR, Ramalho KM, Imparato JC, et al. Clinical use of photodynamic antimicrobial chemotherapy for the treatment of deep carious lesions. J Biomed Opt. 2011 Aug 1;16(8):088003.
  • Cieplik F, Buchalla W, Hellwig E, et al. Antimicrobial photodynamic therapy as an adjunct for treatment of deep carious lesions—a systematic review. Photodiagnosis Photodyn Ther. 2017 Jun;18(18):54–62.
  • Birang E, Ardekani MR, Rajabzadeh M, et al. Evaluation of effectiveness of photodynamic therapy with low-level diode laser in nonsurgical treatment of peri-implantitis. J Lasers Med Sci. 2017;8(3):136.
  • Goh EX, Tan KS, Chan YH, et al. Effects of root debridement and adjunctive photodynamic therapy in residual pockets of patients on supportive periodontal therapy: a randomized split-mouth trial. Photodiagnosis Photodyn Ther. 2017 Jun;18(18):342–348.
  • Chui C, Aoki A, Takeuchi Y, et al. Antimicrobial effect of photodynamic therapy using high‐power blue light‐emitting diode and red‐dye agent on Porphyromonas gingivalis. J Periodontal Res. 2013 Dec;48(6):696–705.
  • Garcez AS, Núñez SC, Lage-Marques JL, et al. Efficiency of NaOCl and laser-assisted photosensitization on the reduction of Enterococcus faecalis in vitro. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2006 Oct 1; 102(4):e93–8.
  • Rolim JP, De-Melo MA, Guedes SF, et al. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. J Photochem Photobiol B Biol. 2012 Jan;106(106):40–46.
  • Prates RA, Yamada JAM, Suzuki LC, et al. Bactericidal effect of malachite green and red laser on Actinobacillus actinomycetemcomitans. J Photochem Photobiol B Biol. 2007 Jan 3;86(1):70–76.
  • Costa LM, de Souza Matos F, de Oliveira Correia AM, et al. Tooth color change caused by photosensitizers after photodynamic therapy: an in vitro study. J Photochem Photobiol B Biol. 2016 Jul;160(160):225–228.
  • Wainwright M, Antczak J, Baca M, et al. Phenothiazinium photoantimicrobials with basic side chains. J Photochem Photobiol B Biol. 2015 Sep;150(150):38–43.
  • Figueiredo RA, Anami LC, Mello I, et al. Tooth discoloration induced by endodontic phenothiazine dyes in photodynamic therapy. Photomed Laser Surg. 2014 Aug 1;32(8):458–462.
  • Carvalho ED, Mello I, Albergaria SJ, et al. Effect of chemical substances in removing methylene blue after photodynamic therapy in root canal treatment. Photomed Laser Surg. 2011 Aug 1;29(8):559–563.
  • Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy–mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018 Oct;1(106):1098–1107.
  • Slater AG, Cooper AI. Porous materials. Function-led design of new porous materials. Science (New York, NY). 2015 May 1;348(6238):aaa8075.
  • Yan H, Wang S, Han L, et al. Chlorhexidine-encapsulated mesoporous silica-modified dentin adhesive. J Dent. 2018 Nov;78(78):83–90.
  • Natarajan SK, Selvaraj S. Mesoporous silica nanoparticles: importance of surface modifications and its role in drug delivery. RSC Adv. 2014;4(28):14328–14334.
  • Akram Z, Aati S, Ngo H, et al. pH-dependent delivery of chlorhexidine from PGA grafted mesoporous silica nanoparticles at resin-dentin interface. J Nanobiotechnology. 2021 Dec;19(1):1–6.
  • Thorat SB, Diaspro A, Salerno M. In vitro investigation of coupling-agent-free dental restorative composite based on nano-porous alumina fillers. J Dent. 2014 Mar 1;42(3):279–286.
  • Shi M, Xia L, Chen Z, et al. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent. Biomaterials. 2017 Nov;144(144):176–187.
  • Wang R, Habib E, Zhu XX. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites. Dent Mater. 2017 Oct 1;33(10):1139–1148.
  • Li Z, Barnes JC, Bosoy A, et al. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41(7):2590–2605.
  • Jo JK, El-Fiqi A, Lee JH, et al. Rechargeable microbial anti-adhesive polymethyl methacrylate incorporating silver sulfadiazine-loaded mesoporous silica nanocarriers. Dent Mater. 2017 Oct 1;33(10):e361–72.
  • Zeng J, Tian X, Sun Y, et al. pH-sensitive poly(glutamic acid) grafted mesoporous silica nanoparticles for drug delivery. Int J Pharm. 2013 Jun 25;450(1–2):296–303.
  • Arboleda A, Miller D, Cabot F, et al. Assessment of rose bengal versus riboflavin photodynamic therapy for inhibition of fungal keratitis isolates. Am J Ophthalmol. 2014 Jul 1;158(1):64–70.
  • Yoshida T, Yamaguchi K, Tsubota K, et al. Effect of metal conditioners on polymerization behavior of bonding agents. J Oral Sci. 2005;47(4):171–175.
  • Jose P, Sakhamuri S, Sampath V, et al. Degree of conversion of two dentin bonding agents with and without a desensitizing agent using Fourier transform infrared spectroscopy: an in vitro study. Journal of conservative dentistry: JCD. 2011 Jul; 14(3):302.
  • Carvalho RM, Manso AP, Geraldeli S, et al. Durability of bonds and clinical success of adhesive restorations. Dent Mater. 2012 Jan 1;28(1):72–86.
  • Solhi L, Atai M, Nodehi A, et al. Poly (methacrylic acid) modified spherical and platelet hybrid nanoparticles as reinforcing fillers for dentin bonding systems: synthesis and properties. J Mech Behav Biomed Mater. 2020 Sep;109(109):103840.
  • Bertolotti SG, Previtali CM, Rufs AM, et al. Riboflavin/triethanolamine as photoinitiator system of vinyl polymerization. A mechanistic study by laser flash photolysis. Macromolecules. 1999 May 4;32(9):2920–2924.
  • Nguyen AK, Gittard SD, Koroleva A, et al. Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoinitiator. Regen Med. 2013 Nov;8(6):725–738.
  • Kim SH, Chu CC. Visible light induced dextran-methacrylate hydrogel formation using (−)-riboflavin vitamin B2 as a photoinitiator and L-arginine as a co-initiator. Fibers Polym. 2009 Feb;10(1):14–20.
  • Kim SH, Chu CC. Fabrication of a biodegradable polysaccharide hydrogel with riboflavin, vitamin B2, as a photo-initiator and L-arginine as coinitiator upon UV irradiation. J Biomed Mater Res Part B. 2009 Oct;91B(1):390–400.
  • Zaborniak I, Surmacz K, Flejszar M, et al. Triple-functional riboflavin-based molecule for efficient atom transfer radical polymerization in miniemulsion media. J Appl Polym Sci. 2020 Nov 10;137(42):49275.
  • Zhang T, Yeow J, Boyer C. A cocktail of vitamins for aqueous RAFT polymerization in an open-to-air microtiter plate. Polym Chem. 2019;10(34):4643–4654.
  • Zaborniak I, Chmielarz P, Matyjaszewski K. Synthesis of Riboflavin-based macromolecules through Low ppm ATRP in Aqueous Media. Macromol Chem Phys. 2020 Feb;221(4):1900496.
  • Zaborniak I, Chmielarz P. Dually-functional riboflavin macromolecule as a supramolecular initiator and reducing agent in temporally-controlled low ppm ATRP. Express Polym Lett. 2020 Mar 1;14(3):235–247.
  • Zaborniak I, Chmielarz P, Wolski K. Riboflavin-induced metal-free ATRP of (meth)acrylates. Eur Polym J. 2020 Nov;140(140):110055.
  • Akram Z, Hyder T, Al-Hamoudi N, et al. Efficacy of photodynamic therapy versus antibiotics as an adjunct to scaling and root planing in the treatment of periodontitis: a systematic review and meta-analysis. Photodiagnosis Photodyn Ther. 2017 Sep;19(19):86–92.
  • Lan M, Zhao S, Wei X, et al. Pyrene-derivatized highly fluorescent carbon dots for the sensitive and selective determination of ferric ions and dopamine. Dyes Pigm. 2019 Nov;170(170):107574.
  • Allison RR, Moghissi K. Photodynamic therapy (PDT): PDT mechanisms. Clin Endosc. 2013 Jan;46(1):24.
  • Insińska‐Rak M, Sikorski M. Riboflavin Interactions with Oxygen-A Survey from the photochemical perspective. Chemistry - A European Journal. 2014 Nov 17;20(47):15280–15291.
  • Alqerban A. Effectiveness of riboflavin and rose bengal photosensitizer modified adhesive resin for orthodontic bonding. Pharmaceuticals. 2021 Jan;14(1):48.
  • Wang Z, Fang Y, Zhou X, et al. Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity. Nano Res. 2020 Jan;13(1):203–208.
  • Zheng K, Setyawati MI, Leong DT, et al. Antimicrobial silver nanomaterials. Coord Chem Rev. 2018 Feb;357(357):1–7.
  • Cheng L, Zhang K, Zhang N, et al. Developing a new generation of antimicrobial and bioactive dental resins. J Dent Res. 2017 Jul;96(8):855–863.
  • Khan AA, Al Kheraif AA, Jamaluddin S, et al. Recent trends in surface treatment methods for bonding composite cement to zirconia: a review. J Adhes Dent. 2017 Jan 1;19(1):7–19.
  • Huang B, Siqueira WL, Cvitkovitch DG, et al. Esterase from a cariogenic bacterium hydrolyzes dental resins. Acta Biomater. 2018 Apr;71(71):330–338.
  • El-Damanhoury HM, Gaintantzopoulou M. Effect of thermocycling, degree of conversion, and cavity configuration on the bonding effectiveness of all-in-one adhesives. Oper Dent. 2015;40(5):480–491.
  • Khoroushi M, Rafiei E. Effect of thermocycling and water storage on bond longevity of two self-etch adhesives. Gen Dent. 2013 May 1;61(3):39–44.
  • Sangwichit K, Kingkaew R, Pongprueksa P, et al. Effect of thermocycling on the durability of etch-and-rinse and self-etch adhesives on dentin. Dent Mater J. 2016 May 31;35(3):360–368.
  • Bafkary R, Ahmadi S, Fayazi F, et al. Amphiphilic hyperbranched polyester coated rod mesoporous silica nanoparticles for pH-responsive doxorubicin delivery. DARU J Pharma Sci. 2020 Jun;28(1):171–180.
  • Akram Z, Daood U, Aati S, et al. Formulation of pH-sensitive chlorhexidine-loaded/mesoporous silica nanoparticles modified experimental dentin adhesive. Mater Sci Eng C. 2021 Mar;122(122):111894.
  • D’Alpino PH, Silva MS, Vismara MV, et al. de Oliveira Graeff CF. The effect of polymerization mode on monomer conversion, free radical entrapment, and interaction with hydroxyapatite of commercial self-adhesive cements. J Mech Behav Biomed Mater. 2015 Jun;46(46):83–92.
  • Aguiar TR, Francescantonio MD, Arrais CA, et al. Influence of curing mode and time on degree of conversion of one conventional and two self-adhesive resin cements. Oper Dent. 2010 May;35(3):295–299.
  • Alshali RZ, Salim NA, Satterthwaite JD, et al. Long-term sorption and solubility of bulk-fill and conventional resin-composites in water and artificial saliva. J Dent. 2015 Dec 1;43(12):1511–1518.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.