Publication Cover
Materials Technology
Advanced Performance Materials
Volume 37, 2022 - Issue 11
107
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A systematic investigation on the effect of Reducing Agents towards Specific Capacitance of NiMg@OH/ Reduced Graphene Oxide Nanocomposites

, , , , ORCID Icon &
Pages 1864-1876 | Received 19 Aug 2021, Accepted 14 Oct 2021, Published online: 11 Nov 2021

References

  • Miller JR, Simon P. Materials science: electrochemical capacitors for energy management. Science. 2008;321(5889):651–652.
  • Li M, Yang W, Li J, et al. Porous layered stacked MnCo2O4 cubes with enhanced electrochemical capacitive performance. Nanoscale. 2018;10(5):2218–2225.
  • Du K, Wei G, Zhao F, et al. Urchin-like FeOOH hollow microspheres decorated with MnO2 for enhanced supercapacitor performance. Sci China Mater. 2018;61(1):48–56.
  • Liu L, Tian Q, Yao W, et al. All-printed ultra fl exible and stretchable asymmetric in-plane solid-state supercapacitors (ASCs) for wearable electronics. J Power Sources Internet. 2018;397:59–67. Available from.
  • Zhang Y, Zhou W, Yu H, et al. Self-templated synthesis of nickel silicate hydroxide/reduced graphene oxide composite hollow microspheres as highly stable supercapacitor electrode material. Nanoscale Res Lett. 2017;12(1):325.
  • Liu F, Chu X, Zhang H, et al. Synthesis of self-assembly 3D porous Ni(OH)2 with high capacitance for hybrid supercapacitors. Electrochim Acta Internet. 2018;269:102–110. Available from.
  • Li M, Lei W, Yu Y, et al. High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities. Nanoscale. 2018;10(34):15926–15931.
  • Yang Q, Lu Z, Liu J, et al. Metal oxide and hydroxide nanoarrays: hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Prog Nat Sci Mater Int Internet. 2013;23(4):351–366. Available from.
  • Qi Y, Liu Y, Zhu R, et al. Rapid synthesis of Ni(OH)2/graphene nanosheets and NiO@Ni(OH)2/graphene nanosheets for supercapacitor applications. New J Chem. 2019;43(7):3091–3098.
  • Pilarska A, Wysokowski M, Markiewicz E, et al. Synthesis of magnesium hydroxide and its calcinates by a precipitation method with the use of magnesium sulfate and poly(ethylene glycols). Powder Technol. 2013;235:148–157.
  • Chou S, Wang J, Chew S, et al. Electrochemistry communications electrodeposition of MnO 2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem commun Internet. 2008;10:1724–1727. Available from.
  • Wang Y, Yin Z, Li X, et al. Electrochimica acta smartly tailored Co (OH) 2 -Ni (OH) 2 heterostructure on nickel foam as binder-free electrode for high-energy hybrid capacitors. Electrochim Acta Internet. 2019;309:140–147. Available from.
  • Sivakumar S, Mala NA, Batoo KM, et al. Efficient, highly stable Zn2+ doped NiO nanoparticles with enhanced magnetic and supercapacitor applications. Mater Technol Internet. 2021; 1–13. Available from. 10.1080/10667857.2021.1949527.
  • Memon J, Sun J, Meng D, et al. Synthesis of graphene/Ni-Al layered double hydroxide nanowires and their application as an electrode material for supercapacitors. J Mater Chem A. 2014;2:5060–5067.
  • Access G. Silver incorporated partially reduced NiCo-layered double hydroxide frameworks for asymmetric supercapacitors. Journal of Energy Storage.2020;31:1–2.
  • Srikesh G, Nesaraj AS. Facile soft chemical synthesis and characterisation of novel cobalt doped nickel oxide based nanostructured electrode materials for electrochemical capacitors. Mater Technol Internet. 2020;1–14. Available from. 10.1080/10667857.2020.1824147
  • Vidotti M, Salvador RP, Ponzio EA, et al. Mixed Ni/Co hydroxide nanoparticles synthesized by sonochemical method. J Nanosci Nanotechnol. 2007;7(9):3221–3226.
  • Yu S, Zhang Y, Lou G, et al. Synthesis of NiMn-LDH Nanosheet@Ni3S2 nanorod hybrid structures for supercapacitor electrode materials with ultrahigh specific capacitance. Sci Rep Internet. 2018;8: 1–12. Available from. 10.1038/s41598-018-23642-6
  • Gunjakar JL, Hou B, Inamdar AI, et al. Two-dimensional layered hydroxide nanoporous nanohybrids pillared with zero-dimensional polyoxovanadate nanoclusters for enhanced water oxidation catalysis. Small. 2018;14:1–10.
  • Salunkhe RR, Jang K, Lee SW, et al. Binary metal hydroxide nanorods and multi-walled carbon nanotube composites for electrochemical energy storage applications. J Mater Chem. 2012;22:21630–21635.
  • Shakir I, Almutairi Z, Saad Shar S. Fabrication of binary transition metal hydroxides and their nanocomposite with CNTs for electrochemical capacitor applications. Ceram Int Internet. 2021;47(1):1191–1198.
  • Bai Y, Liu M, Sun J, et al. Fabrication of Ni-Co binary oxide/reduced graphene oxide composite with high capacitance and cyclicity as efficient electrode for supercapacitors. Ionics (Kiel). 2016;22(4):535–544.
  • Ates M, Yoruk O, Bayrak Y. Binary nanocomposites of reduced graphene oxide and cobalt (II, III) oxide for supercapacitor devices. Mater Technol Internet. 2021;1–15. Available from. 10.1080/10667857.2021.1926810
  • Maity S, Das PP, Mal SS. Decavanadate-graphene oxide nanocomposite as an electrode material for electrochemical capacitor.Mater Technol Internet. 2021;1–11. Available from. 10.1080/10667857.2021.1924439
  • Goswami M, Saraf M, Singh B, et al. Physicochemical and electrochemical behaviours of manganese oxide electrodes for supercapacitor application. J Energy Storage Internet. 2020;28:101228.
  • Zhang W, Zhang P, Wang Y, et al. Preparation of Mg(OH)2 nanosheets and self-assembly of its flower-like nanostructure via precipitation method for heat-resistance application. Integr Ferroelectr. 2015;163:148–154.
  • Hall DS, Lockwood DJ, Poirier S, et al.Raman and infrared spectroscopy of α and β phases of Thin Nickel. J. Phys. Chem. A. 2012;116:6771-6784.
  • Purkait T, Singh G, Kumar D, et al. High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci Rep Internet. 2018;8(1):1–13. Available from.
  • Elshahawy AM, Ho KH, Hu Y, et al. Microwave-assisted hydrothermal synthesis of nanocrystal β-Ni(OH)2 for supercapacitor applications. CrystEngComm. 2016;18:3256–3264.
  • Hall DS, Lockwood DJ, Bock C, et al.Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc R Soc A Math Phys Eng Sci. 2014;471:1-65.
  • Sirota V, Selemenev V, Kovaleva M, et al. Preparation of crystalline Mg(OH)2 nanopowder from serpentinite mineral. Int J Min Sci Technol [ Internet]. 2018;283:499–503.
  • Bhargava R, Khan S. Effect of reduced graphene oxide (rGO) on structural, optical, and dielectric properties of Mg(OH)2/rGO nanocomposites. Adv Powder Technol Internet. 2017;28:2812–2819. Available from.
  • Halder M, Islam MM, Singh P, et al. Sustainable generation of Ni(OH)2 nanoparticles for the green synthesis of 5-substituted 1 H-tetrazoles: a competent turn on fluorescence sensing of H2O2. ACS Omega. 2018;3:8169–8180.
  • Harvey A, He X, Godwin IJ, et al. Production of Ni(OH)2 nanosheets by liquid phase exfoliation: from optical properties to electrochemical applications. J Mater Chem A. 2016;4:11046–11059.
  • Cui H, Xue J, Ren W, et al.Ultra-high specific capacitance of β-Ni(OH)2monolayer nanosheets synthesized by an exfoliation-free sol-gel route. J Nanopart Res. 2014;16: 1-9.
  • Ansari A, Ali A, Asif M, et al. Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines. New J Chem. 2018;42(1):184–197.
  • Pérez-Ramírez J, Mul G, Kapteijn F, et al. In situ investigation of the thermal decomposition of Co-Al hydrotalcite in different atmospheres. J Mater Chem. 2001;11:821–830.
  • Ding Y, Xu L, Chen C, et al. Syntheses of nanostructures of cobalt hydrotalcite like compounds and CO3O4 via a microwave-assisted reflux method. J Phys Chem C. 2008;112:8177–8183.
  • Wang J, Salihi EC, Šiller L. Green reduction of graphene oxide using alanine. Mater Sci Eng C. 2017;72:1–6.
  • Zahir MH, Rahman MM, Irshad K, et al. Shape-stabilized phase change materials for solar energy storage: mgO and mg(OH)2 mixed with polyethylene glycol. Nanomaterials. 2019;9(12):1–21.
  • Cheng M, Fan H, Song Y, et al. Interconnected hierarchical NiCo2O4 microspheres as high-performance electrode materials for supercapacitors. Dalt Trans. 2017;46:9201–9209.
  • La DD, Patwari JM, Jones LA, et al. Fabrication of a GNP/Fe-Mg binary oxide composite for effective removal of arsenic from aqueous solution. ACS Omega. 2017;2:218–226.
  • Sharma N, Sharma V, Vyas R, et al. A new sustainable green protocol for production of reduced graphene oxide and its gas sensing properties. J Sci Adv Mater Devices Internet. 2019;43:473–482.
  • Kim BK, Sy S, Yu A, et al. Electrochemical Supercapacitors for Energy Storage and Conversion. Handb Clean Energy Syst. 2015;1–25.
  • Vidhya MS, Ravi G, Yuvakkumar R, et al. Nickel-cobalt hydroxide: a positive electrode for supercapacitor applications. RSC Adv. 2020;10:19410–19418.
  • Dawson P, Hadfield CD, Wilkinson GR. The polarized infra-red and Raman spectra of Mg(OH)2 and Ca(OH)2. J Phys Chem Solids. 1973;34(7):1217–1225.
  • Kumar TR, Madhuri S, Ram ES, et al. microwave irradiated novel mesoporous nickel oxide carbon nanocomposite electrodes for supercapacitor application.:1–11.
  • Velpula D, Konda S, Vasukula S, et al. Microwave radiated comparative growths of vanadium pentoxide nanostructures by green and chemical routes for energy storage applications. Mater Today Proc Internet. 2021. Available from. 10.1016/j.matpr.2021.02.599
  • Yin J, Zhou G, Gao X, et al. α-and β-phase Ni-Mg hydroxide for high performance hybrid supercapacitors. Nanomaterials. 2019;9:1–14.
  • Xia QX, San Hui K, Hui KN, et al. Facile synthesis of manganese carbonate quantum dots/Ni(HCO3)2-MnCO3 composites as advanced cathode materials for high energy density asymmetric supercapacitors. J Mater Chem A Internet. 2015;3:22102–22117. Available from.
  • Ge X, Gu CD, Wang XL, et al. Ionothermal synthesis of cobalt iron layered double hydroxides (LDHs) with expanded interlayer spacing as advanced electrochemical materials. J Mater Chem A. 2014;2:17066–17076.
  • Yin J, Zhou G, Gao X, et al.α - and β -Phase Ni-Mg Hydroxide for High Performance Hybrid Supercapacitors. Nanomaterials . 2019;9:1–14.
  • Liu Y, Wang R, Yan X. Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor. Sci Rep Internet. 2015;5:1–12. Available from.
  • Lai F, Miao YE, Zuo L, et al. Biomass-derived nitrogen-doped carbon nanofiber network: a facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode. Small. 2016;12:3235–3244.
  • Xie M, Xu Z, Duan S, et al. Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res. 2018;11:216–224.
  • Bhargava A, Alarco JA, Mackinnon IDR, et al. Synthesis and characterisation of nanoscale magnesium oxide powders and their application in thick films of Bi2Sr2CaCu2O8. Mater Lett. 1998;34:133–142.
  • Divya V, Mondal S, Sangaranarayanan MV. Shape-controlled synthesis of palladium nanostructures from flowers to thorns: electrocatalytic oxidation of ethanol. J Nanosci Nanotechnol. 2018;19:758–769.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.