Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
2,443
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Carbon coated “zero-strain” Li2TiSiO5 nanowires for high-performance lithium storage

, , , & ORCID Icon
Article: 2204292 | Received 21 Jan 2023, Accepted 14 Apr 2023, Published online: 25 Apr 2023

References

  • Wang L, Liu T, Wu T, et al. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature. 2022;611:61–7.
  • Wang C, Liu T, Yang X, et al. Fast charging of energy-dense lithium-ion batteries. Nature. 2022;611:485–490.
  • Liu T, Liu J, Li L, et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature. 2022;606:305–312.
  • Bi Y, Tao J, Wu Y, et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science. 2020;370:1317–1323.
  • Schmuch R, Wagner R, Hörpel G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy. 2018;3:267–278.
  • Chai Y, Guo Y, Wang Y, et al. TiO2 nanoparticles coated Co3O4/C microspherical as a high rate lithium storage material. Mater Technol. 2022;37:2588–2597.
  • Yang J, Ren K, Hong M, et al. New insight into lattice variations of Ni-rich NMC811 cathode induced by Li2ZrO3 coating. Mater Technol. 2022;37:1926–1935.
  • Zhang Q, Ji S, Yan C, et al. Insights into the porosity and electrochemical performance of nano Li2FeSiO4 and Li2FeSiO4/C composite cathode materials. Mater Technol. 2022;37:1195–1204.
  • Huang C, Li R, Luo L, et al. The exploration of a CuNb3O8 Li+-storage anode compound. Mater Technol. 2022;37:814–821.
  • Sivakkumar SR, Nerkar JY, Pandolfo AG. Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochim Acta. 2010;55:3330–3335.
  • Waldmann T, Wilka M, Kasper M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries – a post-mortem study. J Power Sources. 2014;262:129–135.
  • Lv C, Lin C, Zhao X. Rational design and synthesis of nickel niobium oxide with high-rate capability and cycling stability in a wide temperature range. Adv Energy Mater. 2021;11:2102550.
  • Kim MS, Lee BH, Park JH, et al. Operando identification of the chemical and structural origin of Li-ion battery aging at near-ambient temperature. J Am Chem Soc. 2020;142:13406–13414.
  • Zhao B, Ran R, Liu M, et al. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater Sci Eng R. 2015;98:1–71.
  • He Y, Li B, Liu M, et al. Gassing in Li4Ti5O12-based batteries and its remedy. Sci Rep. 2012;2:913.
  • Liu J, Pang W, Zhou T, et al. Li2TiSiO5: a low potential and large capacity Ti-based anode material for Li-ion batteries. Energy Environ Sci. 2017;10:1456–1464.
  • He D, Wang B, Wu T, et al. TiO2 nanocrystal-framed Li2TiSiO5 platelets for low-voltage lithium battery anode. Adv Funct Mater. 2020;30:2001909.
  • Li Y, Mei Y, Lan X, et al. Insight into effects of niobium on electrospun Li2TiSiO5 fibers as anode materials in lithium-ion batteries. Mater Res Bull. 2021;136:111145.
  • Toby B. EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr. 2001;34:210–213.
  • Ma S, Jiang T, Deng J, et al. VPO5: an all-climate lithium-storage material. Energy Storage Mater. 2022;46:366–373.
  • Jiang T, Ma S, Deng J, et al. Partially reduced titanium niobium oxide: a high-performance lithium-storage material in a broad temperature range. Adv Sci. 2022;9:2105119.
  • Huang W, Yang C, Miao N, et al. A novel temperature-dependent electrochemical system for electrode materials for time resolved X-ray diffraction. Scr Mater. 2022;211:114529.
  • Slobodin BV, Surat LL, Zubkov VG, et al. Structural, luminescence, and electronic properties of the alkaline metal-strontium cyclotetravanadates M2Sr(VO3)4, (M=na, K, Rb, Cs). Phys Rev B. 2005;72:155205.
  • Yang L, Liang G, Cao H, et al. A new sodium calcium cyclotetravanadate framework: “zero-strain” during large-capacity lithium intercalation. Adv Funct Mater. 2021;31:2105026.
  • Larsson P, Andersson A, Wallenberg R, et al. Combustion of CO and toluene; characterisation of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide. J Catal. 1996;163:279–293.
  • Gonbeau D, Guimon C, Pfister-Guillouzo G, et al. XPS study of thin films of titanium oxysulfides. Surf Sci. 1991;254:81–89.
  • Zhang L, Zhang X, Tian G, et al. Lithium lanthanum titanate perovskite as an anode for lithium ion batteries. Nat Commun. 2020;11:3490.
  • Lu X, Jian Z, Fang Z, et al. Atomic-scale investigation on lithium storage mechanism in TiNb2O7. Energy Environ Sci. 2011;4:2638–2644.
  • Jayaraman S, Aravindan V, Kumar PS, et al. Exceptional performance of TiNb2O7 anode in all one-dimensional architecture by electrospinning. ACS Appl Mater Interfaces. 2014;6:8660–8666.
  • Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12:518–522.
  • Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7:1597–1614.
  • Liu J, Wang J, Xu C, et al. Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci. 2018;5:1700322.
  • Weppner W, Huggins RA. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc. 1977;124:1569–1578.
  • Fu Q, Zhu X, Li R, et al. A low-strain V3Nb17O50 anode compound for superior Li+ storage. Energy Storage Mater. 2020;30:401–411.
  • Wunde F, Berkemeier F, Schmitz G. Lithium diffusion in sputter-deposited Li4Ti5O12 thin films. J Power Sources. 2012;215:109–115.
  • Zhang Y, Liu J, Wang H. Alter martensitic phase transformation kinetics by forming Ni-rich nanolayer in metastable austenitic steels. Sci China Technol Sci. 2019;62:546–550.
  • Cava RJ, Murphy DW, Zahurak SM. Lithium insertion in Wadsley-Roth phases based on niobium oxide. J Electrochem Soc. 1983;30:2345–2351.
  • Peng N, Cheng X, Yu H, et al. LiY(MoO4)2 nanotubes: novel zero-strain anode for electrochemical energy storage. Energy Storage Mater. 2019;21:297–307.
  • Zhang Q, Ma S, Wang W, et al. “Zero-strain” K2SrV4O12 as a high-temperature friendly Li+-storage material. Energy Storage Mater. 2022;52:637–645.