Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
1,031
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

A triboelectric vibration sensor for detecting loose bolts in automobile

, &
Article: 2214775 | Received 11 Apr 2023, Accepted 12 May 2023, Published online: 25 May 2023

References

  • Jia Y, Wang S, Peng J, et al. Evaluation of pavement rutting based on driving safety of vehicles. Int J Pavement Res Technol. 2022;15(2):457–7. DOI:10.1007/s42947-021-00032-2
  • Zhou X, Sun F, Zhang C, et al. Stochastically predictive co-optimization of the speed planning and powertrain controls for electric vehicles driving in random traffic environment safely and efficiently. J Power Sources. 2022;528:231200.
  • Ahmed MM, Khan MN, Das A, et al. Global lessons learned from naturalistic driving studies to advance traffic safety and operation research: a systematic review. Accid Anal Prev. 2022;167:106568.
  • Parekh D, Poddar N, Rajpurkar A, et al. A review on autonomous vehicles: progress, methods and challenges. Electronics. 2022;11(14):2162. DOI:10.3390/electronics11142162
  • Hang P, Huang C, Hu Z, et al. Driving conflict resolution of autonomous vehicles at unsignalized intersections: a differential game approach. IEEE ASME Trans Mechatron. 2022;27(6):5136–5146. DOI:10.1109/TMECH.2022.3174273
  • Li WD, Ke K, Jia J, et al. Recent advances in multiresponsive flexible sensors towards E‐skin: a delicate design for versatile sensing. Small. 2022;18(7):2103734. DOI:10.1002/smll.202103734
  • Zhao C, Wang Y, Tang G, et al. Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv Funct Mater. 2022;32(17):2110417. DOI:10.1002/adfm.202110417
  • Zhao S, Ran W, Lou Z, et al. Neuromorphic-computing-based adaptive learning using ion dynamics in flexible energy storage devices. Natl Sci Rev. 2022;9(11):nwac158. DOI:10.1093/nsr/nwac158
  • Liu M, Li X, Shao C, et al. Synchronous-ultrahigh conductive-reactive N-atoms doping strategy of carbon nanofibers networks for high‐performance flexible energy storage. Energy Storage Mater. 2022;44:250–262.
  • Ansari MA, Somdee P. piezoelectric polymeric foams as flexible energy harvesters: a review. Adv Energy Sustain Res. 2022;3(9):2200063.
  • Venkatesan M, Chen WC, Cho CJ, et al. Enhanced piezoelectric and photocatalytic performance of flexible energy harvester based on CsZn0. 75Pb0. 25I3/CNC–PVDF composite nanofibers. Chem Eng J. 2022;433:133620.
  • Pavel IA, Lakard S, Lakard B. Flexible sensors based on conductive polymers. Chemosensors. 2022;10(3):97.
  • Peng S, Guo Q, Thirunavukkarasu N, et al. Tailoring of photocurable ionogel toward high resilience and low hysteresis 3D printed versatile porous flexible sensor. Chem Eng J. 2022;439:135593.
  • Nie Y, Yue D, Xiao W, et al. Anti-freezing and self-healing nanocomposite hydrogels based on poly (vinyl alcohol) for highly sensitive and durable flexible sensors. Chem Eng J. 2022;436:135243.
  • Qin T, Liao W, Yu L, et al. Recent progress in conductive self‐healing hydrogels for flexible sensors. J Polym Sci. 2022;60(18):2607–2634. DOI:10.1002/pol.20210899
  • Shen Z, Liu F, Huang S, et al. Progress of flexible strain sensors for physiological signal monitoring. Biosens Bioelectron. 2022;114298.
  • Ma Z, Zhang Y, Zhang K, et al. Recent progress in flexible capacitive sensors: structures and properties. Nano Mater Sci. 2022. DOI:10.1016/j.nanoms.2021.11.002
  • Mirjalali S, Mahdavi Varposhti A, Abrishami S, et al. A review on wearable electrospun polymeric piezoelectric sensors and energy harvesters. Macromol Mater Eng. 2023;308(1):2200442. DOI:10.1002/mame.202200442
  • Qu X, Liu Z, Tan P, et al. Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci Adv. 2022;8(31):eabq2521. DOI:10.1126/sciadv.abq2521
  • Pu X, An S, Tang Q, et al. Wearable triboelectric sensors for biomedical monitoring and human-machine interface. iScience. 2021;24(1):102027. Iscience.
  • Xiang H, Zeng Y, Huang X, et al. From triboelectric nanogenerator to multifunctional triboelectric sensors: a chemical perspective toward the interface optimization and device integration. Small. 2022;18(43):2107222. DOI:10.1002/smll.202107222
  • Kim DW, Lee JH, Kim JK, et al. Material aspects of triboelectric energy generation and sensors. Npg Asia Mater. 2020;12(1):6. DOI:10.1038/s41427-019-0176-0
  • Fang Y, Zou Y, Xu J, et al. Ambulatory cardiovascular monitoring via a machine‐learning‐assisted textile triboelectric sensor. Adv Mater. 2021;33(41):2104178. DOI:10.1002/adma.202104178
  • Yao X. A flexible triboelectric nanogenerator based on soft foam for rehabilitation monitor after foot surgery. Mater Technol. 2022;37(10):1516–1522.
  • Wang S, Zhang Y. A functional triboelectric nanogenerator based on the LiCl/PVA hydrogel for cheerleading training. Mater Technol. 2022;37(13):2752–2757.
  • Lu Y, Tian H, Cheng J, et al. Decoding lip language using triboelectric sensors with deep learning. Nat Commun. 2022;13(1):1401. DOI:10.1038/s41467-022-29083-0
  • Zhu M, Sun Z, Chen T, et al. Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nat Commun. 2021;12(1):2692. DOI:10.1038/s41467-021-23020-3
  • Han G, Wu B, Pu Y. High output triboelectric nanogenerator based on scotch tape for self-powered flexible electrics. Mater Technol. 2022;37(4):224–229.
  • Yan Z, Wang L, Xia Y, et al. Flexible high-resolution triboelectric sensor array based on patterned laser‐induced graphene for self-powered real-time tactile sensing. Adv Funct Mater. 2021;31(23):2100709. DOI:10.1002/adfm.202100709
  • Gao Q, Cheng T, Wang ZL. Triboelectric mechanical sensors—Progress and prospects. Extreme Mech Lett. 2021;42:101100.
  • Ren L. A triboelectric nanogenerator based on foam for human motion posture monitoring. Mater Technol. 2022;37(9):1140–1145.
  • Liu R, Li M. A textile-based triboelectric nanogenerator for long jump monitoring. Mater Technol. 2022;37(12):2360–2367.
  • Wang Z, Gao W. A wave structure triboelectric nanogenerator for race walking motion sensing. Mater Technol. 2022;37(13):2637–2643.
  • Kojčinović J, Sahu M, Hajra S, et al. Nanocrystalline triple perovskite compounds A3Fe2BO9 (A= Sr, Ba;B= W, Te) with ferromagnetic and dielectric properties for triboelectric energy harvesting. Mater Chem Front. 2022;6(9):1116–1128. DOI:10.1039/D1QM01565F
  • Sahu M, Hajra S, Panda S, et al. Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics. Nano Energy. 2022;97:107208.
  • Hajra S, Panda J, Swain J, et al. Triazine skeletal covalent organic frameworks: a versatile highly positive surface potential triboelectric layer for energy harvesting and self-powered applications. Nano Energy. 2022;101:107620.
  • Xiao X, Zhang X, Wang S, et al. Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self‐powered engine condition monitoring. Adv Energy Mater. 2019;9(40):1902460. DOI:10.1002/aenm.201902460
  • Cheng P, Guo H, Wen Z, et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy. 2019;57:432–439.
  • Zou H, Zhang Y, Guo L, et al. Quantifying the triboelectric series. Nat Commun. 2019;10(1):1427. DOI:10.1038/s41467-019-09461-x
  • Zhang B, Wu Z, Lin Z, et al. All-in-one 3D acceleration sensor based on coded liquid–metal triboelectric nanogenerator for vehicle restraint system. Mater Today. 2021;43:37–44.