Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
745
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of Bi2O4/Bi2WO6 composite for high photocatalytic performance

, , , , , & show all
Article: 2225945 | Received 17 Feb 2023, Accepted 10 Jun 2023, Published online: 18 Jun 2023

References

  • Liu Y, Peng C, Cai Y, et al. Hydrothermal preparation and photocatalytic properties of visible light driven AgBr/BiVO4 nanocomposite. Mater Technol. 2022;37(2):104–9. doi: 10.1080/10667857.2020.1816040
  • Wu G, Xing W. Fabrication of ternary visible-light-driven semiconductor photocatalyst and its effective photocatalytic performance. Mater Technol. 2019;34(5):292–300. doi: 10.1080/10667857.2018.1553267
  • Nakata K, Fujishima A. TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev. 2012;13(3):169–189. doi: 10.1016/j.jphotochemrev.2012.06.001
  • He Y, He Q, Liu Z, et al. Controllable preparation and improved performance of TiO2 photocatalysts with various structures. Mater Technol. 2019;35(24):1–10. doi: 10.1080/10667857.2019.1644038
  • Beldamarco S, Lillorodenas MA. H2 production by cellulose photoreforming with TiO2-Cu photocatalysts bearing different Cu species. 2022. doi: 10.1016/j.cattod.2022.11.006
  • Shu R, Lin B, Wang C, et al. Upgrading phenolic compounds and bio-oil through hydrodeoxygenation using highly dispersed Pt/TiO2 catalyst. Fuel. 2019;239:1083–1090. doi: 10.1016/j.fuel.2018.11.107
  • Wang X, Shen Y, Zuo G, et al. Influence of heat treatment on photocatalytic performance of BiVO4 synthesised by sol-gel method. Mater Technol. 2016;31(3):176–180. doi: 10.1179/1753555715Y.0000000034
  • Peifang W. A one-pot method for the preparation of graphene–Bi2MoO6 hybrid photocatalysts that are responsive to visible-light and have excellent photocatalytic activity in the degradation of organic pollutants. Carbon An International Journal Sponsored By The American Carbon Society. 2012;50:5256–5264. doi: 10.1016/j.carbon.2012.06.063
  • Wang Y, Liu XM, Chen QY, et al. Simultaneous photocatalytic oxidation and adsorption for efficient As(III) removal by magnetic BiOI/γ-Fe2O3 core–shell nanoparticles. Mater Today Chem. 2022;24:100823. doi: 10.1016/j.mtchem.2022.100823
  • Wang X, Liu X, Liu G, et al. Rapid synthesis of BiOCl graded microspheres with highly exposed (110) facets and oxygen vacancies at room temperature to enhance visible light photocatalytic activity. Catal Commun. 2019;130:105769. doi: 10.1016/j.catcom.2019.105769
  • Liu G, Chen Y, Liu X, et al. BiOCl microspheres with controllable oxygen vacancies: synthesis and their enhanced photocatalytic performance. Journal Of Solid State Chemistry France. 2022;306:306. doi: 10.1016/j.jssc.2021.122751
  • Liu Z, Lv F, Xiao Y, et al. Morphology-controllable synthesis of BiOBr architectures and their visible light photocatalytic activities. Mater Technol. 2019;34(11):1–6. doi: 10.1080/10667857.2019.1615274
  • Yun HN, Iwase A, Kudo A, et al. Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting. J Phys Chem Lett. 2010;1(17):2607–2612. doi: 10.1021/jz100978u
  • Ding Y, Zhu L, Yang F. Bi3+ self doped NaBiO3 nanosheets: facile controlled synthesis and enhanced visible light photocatalytic activity. Applied Catalysis, B Environmental. 2015;164:151–158. doi: 10.1016/j.apcatb.2014.09.019
  • Y WH, S LZ, T GL, et al. Novel Bi2O4 /BiOBr heterojunction photocatalysts: in-situ preparation, photocatalytic activity and mechanism. Mater Sci Semicond Process. 2018;77:8–15. doi: 10.1016/j.mssp.2017.12.016
  • S LZ, Ran HS, N NJ, et al. One-pot synthesis of Bismuth Oxyhalide/Oxygen-rich bismuth oxyhalide Heterojunction and its photocatalytic activity. J Colloid Interface Sci. 2014;431:187–193. doi: 10.1016/j.jcis.2014.06.020
  • Wang S, Yang H, Hu G, et al. Synthesis and enhanced photocatalytic activity of Cu(OH)2 cluster modified Bi2WO6 toward RhB degradation. Mater Technol. 2018;33(8):1–11. doi: 10.1080/10667857.2018.1475141
  • Zhou L, A PE, H RM, et al. Fe substitutions improve spectral response of Bi2WO6-Based Photoanodes. ACS Appl Energy Mater. 2022;5(12):15333–15344. doi: 10.1021/acsaem.2c02964
  • Yang R, Qin F, Zheng S, et al. Fabrication of three-dimensional hierarchical BiOBr/Bi2O4 p–n heterojunction with excellent visible light photodegradation performance for 4-chlorophenol. J Phys Chem Solids. 2022;2022(161):110381. doi: 10.1016/j.jpcs.2021.110381
  • V RC, N RI, Koutavarapu R, et al. Novel BiVO4 nanostructures for environmental remediation, enhanced photoelectrocatalytic water oxidation and electrochemical energy storage performance. Solar Energy. 2020;207:441–449. doi: 10.1016/j.solener.2020.06.075
  • Zhang Y, X WW, S GY, et al. Hydrothermal synthesis of Bi2O4/NaBiO3 heterostructures with enhanced visible light photocatalytic properties - ScienceDirect. J Phys Chem Solids. 2020;149:149. doi: 10.1016/j.jpcs.2020.109766
  • Wang Y, Zhang Y, C ZT, et al. Removal of Trace Arsenite through Simultaneous Photocatalytic Oxidation and Adsorption by Magnetic Fe3O4@PpPDA@TiO2 Core-Shell Nanoparticles. ACS Appl Nano Mater. 2020;3(8):8495–8504. doi: 10.1021/acsanm.0c02083
  • Prasenjit K, Shukla K, Jain P, et al. An activated carbon fiber supported Fe2O3@bismuth carbonate heterojunction for enhanced visible light degradation of emerging pharmaceutical pollutants. React Chem Eng. 2021;6:2029–2041. doi: 10.1039/D1RE00250C