Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
476
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure evolution and creep-rupture behaviour of a low-cost Fe-Ni-based superalloy

, , , &
Article: 2270865 | Received 05 Oct 2023, Accepted 10 Oct 2023, Published online: 23 Oct 2023

References

  • Huang Y, Zhang R, Zhou Z, et al. Effect of long-term aging on microstructural stability and tensile deformation of a Fe–Ni-based superalloy. Mater Sci Eng A. 2022;847:143298. doi: 10.1016/j.msea.2022.143298
  • Wei LL, Chen LQ, Ma MY, et al. Oxidation behavior of ferritic stainless steels in simulated automotive exhaust gas containing 5 vol.% water vapor. Mater Chem Phys. 2018;205:508–11. doi: 10.1016/j.matchemphys.2017.11.051
  • Wei L, Zheng J, Chen L, et al. High temperature oxidation behavior of ferritic stainless steel containing W and ce. Corros Sci. 2018;142:79–92. doi: 10.1016/j.corsci.2018.07.017
  • Ning H, Li X, Meng L, et al. Effect of Ni and Mo on microstructure and mechanical properties of grey cast iron. Mater Technol. 2023;38(1):2172991. doi: 10.1080/10667857.2023.2172991
  • Niu G, Zurob HS, Misra RDK, et al. Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure. Acta Mater. 2022;226:117642. doi: 10.1016/j.actamat.2022.117642
  • Misra RDK. Enabling manufacturing of multi-axial forging-induced ultrafine-grained strong and ductile magnesium alloys: a perspective of process-structure-property paradigm. Mater Technol. 2023;38(1):2189769. doi: 10.1080/10667857.2023.2189769
  • Misra RDK, Challa VSA, Injeti VSY. Phase reversion-induced nanostructured austenitic alloys: an overview. Mater Technol. 2022;37(7):437–449. doi: 10.1080/10667857.2022.2065621
  • Wei LL, Gao GH, Kim J, et al. Ultrahigh strength-high ductility 1 GPa low density austenitic steel with ordered precipitation strengthening phase and dynamic slip band refinement. Mater Sci Eng A. 2022;838:142829. doi: 10.1016/j.msea.2022.142829
  • Misra RDK. On the relationship between the grain boundary bio-physical attributes with the cells in the physiological environment. Mater Lett. 2023;344:134453. doi: 10.1016/j.matlet.2023.134453
  • Yang C, Xu H, Wang Y, et al. Hot tearing analysis and process optimisation of the fire face of al-cu alloy cylinder head based on MAGMA numerical simulation. Mater Technol. 2023;38(1):2165245. doi: 10.1080/10667857.2023.2165245
  • Guo L, Su X, Dai L, et al. Strain ageing embrittlement behaviour of X80 self-shielded flux-cored girth weld metal. Mater Technol. 2023;38(1):2164978. doi: 10.1080/10667857.2023.2164978
  • Li Q, Zuo H, Feng J, et al. Strain rate and temperature sensitivity on the flow behaviour of a duplex stainless steel during hot deformation. Mater Technol. 2023;38(1):2166216. doi: 10.1080/10667857.2023.2166216
  • Wang L, Li J, Liu ZQ, et al. Towards strength-ductility synergy in nanosheets strengthened titanium matrix composites through laser power bed fusion of MXene/Ti composite powder. Mater Technol. 2023;38(1):2181680. doi: 10.1080/10667857.2023.2181680
  • Wei L, Chen L, Liu H, et al. Significant grain refinement in the simulated heat affected zone (HAZ) of ferritic stainless steels by alloying with tungsten. Metall Mater Trans A. 2020;51(6):2719–2723. doi: 10.1007/s11661-020-05767-4
  • Wei L, Chen L, Liu H, et al. Precipitation behavior of laves phase in the vicinity of oxide film of ferritic stainless steel: selective oxidation-induced precipitation. Oxid Met. 2020;93(1–2):195–213. doi: 10.1007/s11085-019-09955-5
  • Fatriansyah JF, Suhariadi I, Fauziyyah HA, et al. Prediction and optimization of mechanical properties of Ni based and FeeNi based super alloys via neural network approach with alloying composition parameter. J Mater Res Technol. 2023;24:4168–4176. doi: 10.1016/j.jmrt.2023.04.065
  • Huang YS, Wang XG, Cui CY, et al. The effect of coarsening of γ′ precipitate on creep properties of Ni-based single crystal superalloys during long-term aging. Mater Sci Eng A. 2020;773:138886. doi: 10.1016/j.msea.2019.138886
  • Peng T, Yang B, Yang G, et al. Microstructural evolution and mechanical properties of nimonic 105 alloy aged at 750 °C. J Alloys Compd. 2019;798:375–385. doi: 10.1016/j.jallcom.2019.05.289
  • Acharya MV, Fuchs GE. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys. Mater Sci Eng A. 2004;381(1):143–153. doi: 10.1016/j.msea.2004.04.001
  • Yonemura M, Semba H, Igarashi M. Development of microstructural damage in Ni-based alloys during creep. Metall Mater Trans A. 2016;47(4):1898–1905. doi: 10.1007/s11661-016-3346-5
  • Xia W, Zhao X, Yue L, et al. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: a review. J Alloys Compd. 2020;819:152954. doi: 10.1016/j.jallcom.2019.152954
  • Tang Y, Huang M, Xiong J, et al. Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress. Acta Mater. 2017;126:336–345. doi: 10.1016/j.actamat.2016.12.072
  • Zhang P, Yuan Y, Shen SC, et al. Tensile deformation mechanisms at various temperatures in a new directionally solidified Ni-base superalloy. J Alloy Comp. 2017;694:502–509.
  • Geng P, Li W, Zhang X, et al. A theoretical model for yield strength anomaly of Ni-base superalloys at elevated temperature. J Alloy Comp. 2017;706:340–343. doi: 10.1016/j.jallcom.2017.02.262
  • Cui L, Yu J, Liu J, et al. The creep deformation mechanisms of a newly designed nickel-base superalloy. Mater Sci Eng A. 2018;710:309–317. doi: 10.1016/j.msea.2017.11.002
  • Lv P, Liu L, Zhao G, et al. Creep properties and relevant deformation mechanisms of two low-cost nickel-based single crystal superalloys at elevated temperatures. Mater Sci Eng A. 2022;851:143561. doi: 10.1016/j.msea.2022.143561
  • Wang X, Han G, Cui C, et al. The dependence of portevin–Le châtelier effect on the γ′ precipitates in a wrought Ni-base superalloy. Metall Mater Trans A. 2016;47(12):5994–6003. doi: 10.1007/s11661-016-3718-x
  • Iwamaru A, Hisazawa H, Terada Y. Microstructure evolution of Fe–Ni-based alloy HR6W during isothermal aging. Mater Trans. 2019;60(5):824–829. doi: 10.2320/matertrans.M2019032
  • Cheng H, Li Z, Leng B, et al. Intergranular diffusion and embrittlement of a Ni–16Mo–7Cr alloy in te vapor environment. J Nucl Mater. 2015;467:341–348. doi: 10.1016/j.jnucmat.2015.09.053
  • Unocic KA, Shingledecker JP, Tortorelli PF. Microstructural changes in Inconel® 740 after long-term aging in the presence and absence of stress. JOM. 2014;66(12):2535–2542. doi: 10.1007/s11837-014-1208-4
  • Bechetti DH, DuPont JN, Barbadillo JJ, et al. Microstructural evolution of INCONEL® alloy 740H® fusion welds during creep. Metall Mater Trans A. 2014;46(2):739–755. doi: 10.1007/s11661-014-2682-6
  • Hou K, Ou M, Wang M, et al. Precipitation of η phase and its effects on stress rupture properties of K4750 alloy. Mater Sci Eng A. 2019;763:138137. doi: 10.1016/j.msea.2019.138137
  • Krol T, Baither D, Nembach E. The formation of precipitate free zones along grain boundaries in a superalloy and the ensuing effects on its plastic deformation. Acta Mater. 2004;52(7):2095–2108. doi: 10.1016/j.actamat.2004.01.011
  • Thaveeprungsriporn V, Was GS. The role of coincidence-site-lattice boundaries in creep of Ni-16Cr-9Fe at 360 °C. Metall Mater Trans A. 1997;28(10):2101–2112. doi: 10.1007/s11661-997-0167-6
  • Lall A, Bowen P, Rabiei A. A study on the creep behavior of alloy 709 using in-situ scanning electron microscopy. Mater Charact. 2022;183:111587. doi: 10.1016/j.matchar.2021.111587
  • Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: simplex and alloys strengthened by nanoscale ordered carbides. Mater Sci Technol. 2014;30(9):1099–1104. doi: 10.1179/1743284714Y.0000000515