793
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

An Adaptive Bayesian Lasso Approach with Spike-and-Slab Priors to Identify Multiple Linear and Nonlinear Effects in Structural Equation Models

REFERENCES

  • Armagan, A., Clyde, M., & Dunson, D. B. (2011). Generalized beta mixtures of Gaussians. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. C. N. Pereira, & K. Q. Weinberger (Eds.), Advances in neural information processing systems (Vol. 24, pp. 523–531). Red Hook, NY: Curran Associates, Inc.
  • Armagan, A., Dunson, D. B., & Lee, J. (2013). Generalized double pareto shrinkage. Statistica Sinica, 23, 119–143. doi:10.5705/ss.2011.048
  • Asparouhov, T., Hamaker, E. L., & Muthén, B. O. (2017). Dynamic latent class analysis. Structural Equation Modeling, 24, 257–269. doi:10.1080/10705511.2016.1253479
  • Atchade, Y. F. (2011). A computational framework for empirical Bayes inference. Statistics and Computing, 21, 463–473. doi:10.1007/s11222-010-9182-3
  • Bauer, D. J. (2017). A more general model for testing measurement invariance and differential item functioning. Psychological Methods, 22, 507–526. doi:10.1037/met0000077
  • Betancourt, M., & Girolami, M. (2015). Hamiltonian Monte Carlo for hierarchical models. In S. K. Upadhyay, U. Singh, D. K. Dey, & A. Loganathan (Eds.), Current trends in Bayesian methodology with applications (pp. 79–102). Boca Raton, FL: Chapman & Hall/CRC.
  • Bhadra, A., Datta, J., Polson, N. G., & Willard, B. (2017). The horseshoe+ estimator of ultra-sparse signals. Bayesian Analysis, 12, 1105–1131. doi:10.1214/16-BA1028
  • Bhattacharya, A., Pati, D., Pillai, N. S., & Dunson, D. B. (2015). Dirichlet-Laplace priors for optimal shrinkage. Journal of the American Statistical Association, 110, 1479–1490. doi:10.1080/01621459.2014.960967
  • Bollen, K. A., Kolenikov, S., & Bauldry, S. (2014). Model-implied instrumental variable – Generalized method of moments (MIIV-GMM) estimators for latent variable models. Psychometrika, 79, 20–50. doi:10.1007/s11336-013-9335-3
  • Brandt, H., Kelava, A., & Klein, A. G. (2014). A simulation study comparing recent approaches for the estimation of nonlinear effects in SEM under the condition of non-normality. Structural Equation Modeling, 21, 181–195. doi:10.1080/10705511.2014.882660
  • Brandt, H., Umbach, N., & Kelava, A. (2015). The standardization of linear and nonlinear effects in direct and indirect applications of structural equation mixture models for normal and nonnormal data. Frontiers in Psychology, 6(1813), 1–13. doi:10.3389/fpsyg.2015.01813
  • Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32. doi:10.18637/jss.v076.i01
  • Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97, 465–480. doi:10.1093/biomet/asq017
  • Casella, G. (2001). Empirical Bayes Gibbs sampling. Biostatistics, 2, 485–500. doi:10.1093/biostatistics/2.4.485
  • Cham, H., West, S. G., Ma, Y., & Aiken, L. S. (2012). Estimating latent variable interactions with nonnormal observed data: A comparison of four approaches. Multivariate Behavioral Research, 47, 840–876. doi:10.1080/00273171.2012.732901
  • Chaplin, W. (1991). The next generation of moderator research in personality psychology. Journal of Personality, 59, 143–178. doi:10.1111/jopy.1991.59.issue-2
  • Chaplin, W. (2007). Moderator and mediator models in personality research: A basic introduction. In R. W. Robins, C. Fraley, & R. F. Krueger (Eds.), Handbook of research methods in personality psychology (pp. 602–632). New York, NY: Guilford.
  • Dakanalis, A., Timko, C. A., Zanetti, M. A., Rinaldi, L., Prunas, A., Carrà, G., … Clerici, M. (2014). Attachment insecurities, maladaptive perfectionism, and eating disorder symptoms: A latent mediated and moderated structural equation modeling analysis across diagnostic groups. Psychiatry Research, 215, 176–184. doi:10.1016/j.psychres.2013.10.039
  • Dellaportas, P., Forster, J. J., & Ntzoufras. (2002). On Bayesian model and variable selection using MCMC. Statistics and Computing, 12, 27–36. doi:10.1023/A:1013164120801
  • Dicke, T., Parker, P. D., Marsh, H. W., Kunter, M., Schmeck, A., & Leutner, D. (2014). Self-efficacy in classroom management, classroom disturbances, and emotional exhaustion: A moderated mediation analysis of teacher candidates. Journal of Educational Psychology, 106, 569. doi:10.1037/a0035504
  • Eccles, J. S., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., & Midgley, C. (1983). Expectancies, values and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motives. Psychological and sociological approaches (pp. 75–146). San Francisco, CA: Freeman.
  • Fahrmeir, L., Kneib, T., & Konrath, S. (2010). Bayesian regularisation in structured additive regression: A unifying perspective on shrinkage, smoothing and predictor selection. Statistics and Computing, 20, 203–219. doi:10.1007/s11222-009-9158-3
  • Feng, X.-N., Wang, G.-C., Wang, Y.-F., & Song, X.-Y. (2015). Structure detection of semiparametric structural equation models with Bayesian adaptive group lasso. Statistics in Medicine, 34, 1527–1547. doi:10.1002/sim.6410
  • Feng, X.-N., Wu, H.-T., & Song, X.-Y. (2015). Bayesian adaptive lasso for ordinal regression with latent variables. Sociological Methods & Research, (Online), 1–28. doi:10.1177/0049124115610349
  • Feng, X.-N., Wu, H.-T., & Song, X.-Y. (2017). Bayesian regularized multivariate generalized latent variable models. Structural Equation Modeling, 24, 341-358. doi:10.1080/10705511.2016.1257353
  • Frank, I., & Friedman, J. (1993). A statistical view of some chemometrics regression tools. Technometrics : A Journal of Statistics for the Physical, Chemical, and Engineering Sciences, 35, 109–148. doi:10.2307/1269656
  • Ganzach, Y. (1997). Misleading interaction and curvilinear terms. Psychological Methods, 3, 235–247. doi:10.1037/1082-989X.2.3.235
  • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis, 1, 515–534. doi:10.1214/06-BA117A
  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Boca Raton, FL: CRC Press.
  • Gelman, A., & Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–511. Retrieved from www.jstor.org/stable/2246093
  • George, E. I., & Culloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88, 881–889. doi:10.1080/01621459.1993.10476353
  • Gerhard, C., Büchner, R. D., Klein, A. G., & Schermelleh-Engel, K. (2014). A fit index to assess model fit and detect omitted terms in nonlinear sem. Structural Equation Modeling, 24, 414–427. doi:10.1080/10705511.2016.12689239
  • Gerhard, C., Klein, A. G., Schermelleh-Engel, K., Moosbrugger, H., Gäde, J., & Brandt, H. (2014). On the performance of likelihood-based difference tests in nonlinear structural equation models. Structural Equation Modeling, 22, 276–287. doi:10.1080/10705511.2014.935752
  • Griffin, J. E., & Brown, P. J. (2010). Inference with normal-gamma prior distributions in regression problems. Bayesian Analysis, 5, 171–188. doi:10.1214/10-BA507
  • Griffin, J. E., & Brown, P. J. (2011). Bayesian hyper-lassos with non-convex penalization. Australian and New Zealand Journal of Statistics, 53, 423–442. doi:10.1111/j.1467-842X.2011.00641.x
  • Guo, J., Marsh, H. W., Parker, P. D., Morin, A. J. S., & Yeung, A. S. (2015). Expectancy-value in mathematics, gender and socioeconomic background as predictors of achievement and aspirations: A multi-cohort study. Learning and Individual Differences, 37, 161–168. doi:10.1016/j.lindif.2015.01.008
  • Guo, R., Zhu, H., Chow, S.-M., & Ibrahim, J. G. (2012). Bayesian lasso for semiparametric structural equation models. Biometrics, 68, 567–577. doi:10.1111/j.1541-0420.2012.01751.x
  • Hans, C. (2009). Bayesian lasso regression. Biometrika, 96, 835–845. doi:10.1093/biomet/asp047
  • Hao, S., Hong, W., Xu, H., Zhou, L., & Xie, Z. (2015). Relationship between resilience, stress and burnout among civil servants in Beijing, china: Mediating and moderating effect analysis. Personality and Individual Differences, 83, 65–71. doi:10.1016/j.paid.2015.03.048
  • Hoerl, A. E., & Kennard, R. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12, 55–67. doi:10.1080/00401706.1970.10488634
  • Ishwaran, H., & Rao, J. S. (2005). Spike and slab variable selection: Frequentist and Bayesian strategies. The Annals of Statistics, 33, 730–773. Retrieved from www.jstor.org/stable/3448605
  • Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized structural equation modeling. Structural Equation Modeling, 23, 555–566. doi:10.1080/10705511.2016.1154793
  • Jöreskog, K. G., & Yang, F. (1996). Nonlinear structural equation models: The Kenny-Judd model with interaction effects. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 57–87). Mahwah, NJ: Erlbaum.
  • Kelava, A., & Brandt, H. (2009). Estimation of nonlinear latent structural equation models using the extended unconstrained approach. Review of Psychology, 16, 123–131.
  • Kelava, A., & Brandt, H. (2014). A general nonlinear multilevel structural equation mixture model. Frontiers in Quantitative Psychology and Measurement, 5, 748. doi:10.3389/fpsyg.2014.00748
  • Kelava, A., Nagengast, B., & Brandt, H. (2014). A nonlinear structural equation mixture modeling approach for non-normally distributed latent predictor variables. Structural Equation Modeling, 21, 468–481. doi:10.1080/10705511.2014.915379
  • Kelava, A., Werner, C., Schermelleh-Engel, K., Moosbrugger, H., Zapf, D., Ma, Y., … West, S. G. (2011). Advanced nonlinear structural equation modeling: Theoretical properties and empirical application of the distribution-analytic LMS and QML estimators. Structural Equation Modeling, 18, 465–491. doi:10.1080/10705511.2011.582408
  • Klein, A. G., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65, 457–474. doi:10.1007/BF02296338
  • Klein, A. G., & Muthén, B. O. (2007). Quasi maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects. Multivariate Behavioral Research, 42, 647–674. doi:10.1080/00273170701710205
  • Klein, A. G., Schermelleh-Engel, K., Moosbrugger, H., & Kelava, A. (2009). Assessing spurious interaction effects. In T. Teo & M. Khine (Eds.), Structural equation modeling in educational research: Concepts and applications (pp. 13–28). Rotterdam, NL: Sense Publishers.
  • Kuo, L., & Mallick, B. (1998). Variable selection for regression models. Sankhy¯A (B). 60, 65–81. Retrieved from www.jstor.org/stable/25053023
  • Kyung, M., Gill, J., Ghosh, M., & Casella, G. (2010). Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis, 5, 369–412. doi:10.1214/10-BA607
  • Lapan, R. T., & Jingelski, J. (1992). Circumscribing vocational aspirations in junior secondary school. Journal of Counseling Psychology, 39, 81–90. doi:10.1037/0022-0167.39.1.81
  • Leng, C., Tran, M.-N., & Nott, D. (2014). Bayesian adaptive lasso. Annals of the Institute of Statistical Mathematics, 66, 221–244. doi:10.1007/s10463-013-0429-6
  • Lykou, A., & Ntzoufras, I. (2013). On Bayesian lasso variable selection and the specification of the shrinkage parameter. Statistics and Computing, 23, 361–390. doi:10.1007/s11222-012-9316-x
  • Marsh, H. W., Wen, Z., & Hau, K.-T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. Psychological Methods, 9, 275–300. doi:10.1037/1082-989X.9.3.275
  • Meier, L., Van De Geer, S., & Bühlmann, P. (2008). The group lasso for logistic regression. Journal of the Royal Statistical Society: Series B, 70, 53–71. doi:10.1111/j.1467-9868.2007.00627.x
  • Mitchell, T. J., & Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. Journal of the American Statistical Association, 83, 1023–1032. doi:10.1080/01621459.1988.10478694
  • Mullis, I., & Martin, M. E. (2013). TIMSS 2015 assessment frameworks. TIMSS & PIRLS International Study Center. Retrieved from http://timssandpirls.bc.edu/timss2015/frameworks.html
  • Muthén, B. O., & Asparouhov, T. (2009). Growth mixture modeling: Analysis with non-Gaussian random effects. In G. Fitzmaurice, M. Davidian, G. Verbeke, & G. Molenberghs (Eds.), Longitudinal data analysis (pp. 143–165). Boca Raton, FL: Chapman & Hall/CRC.
  • Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. L. Jones, & X.-L. Meng (Eds.), Handbook of markov chain monte carlo (pp. 113–162). Boca Raton, FL: Chapman & Hall/CRC.
  • Park, T., & Casella, G. (2008). The Bayesian lasso. Journal of the American Statistical Association, 482, 681–686. doi:10.1198/016214508000000337
  • Piironen, J., & Vehtari, A. (2017). Sparsity information and regularization in the horseshoe and other shrinkage priors. Electronic Journal of Statistics, 11, 5018–5051. doi:10.1214/17-EJS1337SI
  • Plummer, M. (2017). Jags version 4.3.0 user manual [Computer software manual]. Retrieved from https://sourceforge.net/projects/mcmc-jags/files/Manuals/4.x/
  • Polson, N. G., & Scott, J. G. (2011). Shrink globally, act locally: Sparse Bayesian regularization and prediction. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, & M. West (Eds.), Bayesian statistics (Vol. 9, pp. 501–538). New York, NY: Oxford University Press.
  • Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2016). Multilevel structural equation models for assessing moderation within and across levels of analysis. Psychological Methods, 21, 189–205. doi:10.1037/met0000052
  • R Core Team. (2015). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R-project.org
  • Scalco, M. D., Colder, C. R., Hawk, L. W., Jr, Read, J. P., Wieczorek, W. F., & Lengua, L. J. (2014). Internalizing and externalizing problem behavior and early adolescent substance use: A test of a latent variable interaction and conditional indirect effects. Psychology of Addictive Behaviors, 28, 828. doi:10.1037/a0035805
  • Schumacker, R. E., & Marcoulides, G. A. (1998). Interaction and nonlinear effects in structural equation modeling. Mahwah, NJ: Erlbaum.
  • Song, X.-Y., Li, Z.-H., Cai, J.-H., & Ip, E. H.-S. (2013). A Bayesian approach for generalized semiparametric structural equation models. Psychometrika, 78, 624–647. doi:10.1007/s11336-013-9323-7
  • Stan Development Team. (2016a). RStan: The R interface to Stan. Retrieved from http://mc-stan.org (R package version 2.14.1)
  • Stan Development Team. (2016b). Stan modeling language: User’s guide and reference manual. Retrieved from http://mc-stan.org (Version 2.14.0)
  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (Series B). 58, 267–288. Retrieved from http://www.jstor.org/stable/2346178
  • Trautwein, U., Marsh, H. W., Nagengast, B., Lüdtke, O., Nagy, G., & Jonkmann, K. (2012). Probing for the multiplicative term in modern expectancy-value theory: A latent interaction modeling study. Journal of Educational Psychology, 104, 763–777. doi:10.1037/a0027470
  • Wall, M. M., & Amemiya, Y. (2003). A method of moments technique for fitting interaction effects in structural equation models. British Journal of Mathematical and Statistical Psychology, 56, 47–63. doi:10.1348/000711003321645331
  • Wang, H., Li, G., & Tsai, C. (2007). Regression coefficient and autoregressive order shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B, 69, 63–78. doi:10.1111/j.1467-9868.2007.00577.x
  • Watt, H. M. G. (2004). Development of adolescents’ self-perceptions, values, and task perceptions according to gender and domain in 7th- through 11th-grade Australian students. Child Development, 75, 1556–1574. doi:10.1111/j.1467-8624.2004.00757.x
  • White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica : Journal of the Econometric Society, 50, 1–25. doi:10.2307/1912526
  • Wigfield, A., & Cambria, J. (2010a). Expectancy-value theory: Retrospective and prospective. In T. Urdan & S. Karabenick (Eds.), The decard ahead: Applications and contexts of motivation and achievement (Vol. Advances I, pp. 35–70). Bingley, UK: Emerald Group Publishing Limited. doi:10.1108/S0749-7423(2010)000016A005
  • Wigfield, A., & Cambria, J. (2010b). Students’ achievement values, goal orientations, and interest: Definitions, development, and relations to achievement outcomes. Developmental Review, 30, 1–35. doi:10.1016/j.dr.2009.12.001
  • Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25, 68–81. doi:10.1006/ceps.1999.1015
  • Xu, X., & Ghosh, M. (2015). Bayesian variable selection and estimation for group lasso. Bayesian Analysis, 4, 909–936. doi:10.1214/14-BA929
  • Yuan, K. H., & Bentler, P. M. (2000). Three likelihoodbased methods for mean and covariance structure analysis with nonnormal missing data. Sociological Methodology, 30, 165–200. doi:10.1111/0081-1750.00078
  • Yuan, M., & Lin, Y. (2005). Efficient empirical bayes variable selection and estimation in linear models. Journal of the American Statistical Association, 100, 1215–1225. doi:10.1198/016214505000000367
  • Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B, 68, 49–67. doi:10.1111/j.1467-9868.2005.00532.x
  • Zhang, Y., Reich, B. J., & Bondell, H. D. (2016). High dimensional linear regression via the r2-d2 shrinkage prior. arXiv preprint. arXiv:1609.00046.
  • Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101, 1418–1429. doi:10.1198/016214506000000735
  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Ser. B, 67, 301–320. doi:10.1111/j.1467-9868.2005.00503.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.