6,434
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

A Comparison of Different Approaches for Estimating Cross-Lagged Effects from a Causal Inference Perspective

&
Pages 888-907 | Received 12 Aug 2021, Accepted 08 Apr 2022, Published online: 10 Jun 2022

References

  • Allison, P. D., Williams, R., & Moral-Benito, E. (2017). Maximum likelihood for cross-lagged panel models with fixed effects. Socius, 3, 237802311771057. https://doi.org/10.1177/2378023117710578
  • Andersen, H. K. (2021). Equivalent approaches to dealing with unobserved heterogeneity in cross-lagged panel models? Investigating the benefits and drawbacks of the latent curve model with structured residuals and the random intercept cross-lagged panel model. Psychological Methods, Advance online publication. https://doi.org/10.1037/met0000285
  • Angrist, J. D., & Pischke, J.-S. (2009). Mostly harmless econometrics: An empiricist’s companion. Princeton University Press. https://doi.org/10.1515/9781400829828
  • Aronow, P. M., & Miller, B. T. (2019). Foundation of agnostic statistics. Cambridge University Press. http://dx.doi.org/10.1017/9781316831762
  • Asendorpf, J. B. (2021). Modeling developmental processes. In J. R. Rauthmann (Ed.), Handbook of personality dynamics and processes (pp. 815–835). Elsevier. https://doi.org/10.1016/B978-0-12-813995-0.00031-5
  • Asparouhov, T., & Muthén, B. (2021). Residual structural equation models. Retrieved from https://www.statmodel.com/download/Asparouhov_Muthen_2021a.pdf
  • Athey, S., & Imbens, G. W. (2015). A measure of robustness to misspecification. American Economic Review, 105, 476–480. https://doi.org/10.1257/aer.p20151020
  • Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11, 685–725. https://doi.org/10.1146/annurev-economics-080217-053433
  • Bai, J., & Li, K. (2014). Theory and methods of panel data models with interactive effects. The Annals of Statistics, 42, 142–170. https://doi.org/10.1214/13-AOS1183
  • Bailey, D. H., Oh, Y., Farkas, G., Morgan, P., & Hillemeier, M. (2020). Reciprocal effects of reading and mathematics? Beyond the cross-lagged panel model. Developmental Psychology, 56, 912–921. https://doi.org/10.1037/dev0000902
  • Berk, R. A., Brown, L., Buja, A., George, E., Pitkin, E., Zhang, K., & Zhao, L. (2014). Misspecified mean function regression: Making good use of regression models that are wrong. Sociological Methods and Research, 43, 433–451. http://dx.doi.org/10.1177/0049124114526375
  • Berry, D., & Willoughby, M. T. (2017). On the practical interpretability of cross-lagged panel models: Rethinking a developmental workshose. Child Development, 88, 1186–1206. https://doi.org/10.1111/cdev.12660
  • Bollen, K. A., & Brand, J. E. (2010). A general panel model with random and fixed effects: A structural equations approach. Social Forces, 89, 1–34. https://doi.org/10.1353/sof.2010.0072
  • Bollen, K. A., & Curran, P. J. (2004). Autoregressive latent trajectory (ALT) models a synthesis of two traditions. Sociological Methods & Research, 32, 336–383. https://doi.org/10.1177/0049124103260222
  • Brumback, B. A. (2021). Fundamentals of causal inference with R. Chapman and Hall. http://dx.doi.org/10.1201/9781003146674
  • Curran, P. J., & Hancock, G. R. (2021). The challenge of modeling co-developmental processes over time. Child Development Perspectives, 15, 67–75. http://dx.doi.org/10.1111/cdep.12401
  • Daniel, R. M., Cousens, S. N., De Stavola, B. L., Kenward, M. G., & Sterne, J. A. C. (2013). Methods for dealing with time-dependent confounding. Statistics in Medicine, 32, 1584–1618. https://doi.org/10.1002/sim.5686
  • De Vos, I., & Everaert, G. (2021). Bias-corrected common correlated effects pooled estimation in dynamic panels. Journal of Business & Economic Statistics, 39, 294–306. https://doi.org/10.1080/07350015.2019.1654879
  • Dietvorst, E., Hiemstra, M., Hillegers, M. H. J., & Keijsers, L. (2018). Adolescent perceptions of parental privacy invasion and adolescent secrecy: An illustration of Simpson’s paradox. Child Development, 89, 2081–2090. https://doi.org/10.1111/cdev.13002
  • Dishop, C. R., & DeShon, R. P. (2021). A tutorial on Bollen and Brand’s approach to modeling dynamics while attending to dynamic panel bias. Psychological Methods, Advance online publication. https://doi.org/10.1037/met0000333
  • Ehm, J.-H., Hasselhorn, M., & Schmiedek, F. (2019). Analyzing the developmental relation of academic self-concept and achievement in elementary school children: Alternative models point to different results. Developmental Psychology, 55, 2336–2351. https://doi.org/10.1037/dev0000796
  • Finkel, S. (1995). Causal analysis with panel data. Sage. http://dx.doi.org/10.4135/9781412983594
  • Gollob, H. F., & Reichardt, C. S. (1987). Taking account of time lags in causal models. Child Development, 58, 80–92. http://dx.doi.org/10.2307/1130293
  • Grimm, K. J., Helm, J., Rodgers, D., & O′Rourke, H. (2021). Analyzing cross-lag effects: A comparison of different cross-lag modeling approaches. New Directions for Child and Adolescent Development, 2021, 11–33. http://dx.doi.org/10.1002/cad.20401
  • Hamaker, E. L. (2005). Conditions for the equivalence of the autoregressive latent trajectory model and a latent growth curve model with autoregressive disturbances. Sociological Methods & Research, 33, 404–416. http://dx.doi.org/10.1177/0049124104270220
  • Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. P. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20, 102–116. http://dx.doi.org/10.1037/a0038889
  • Heise, D. R. (1969). Separating reliability and stability in test-retest correlation. American Sociological Review, 34, 93–101. http://dx.doi.org/10.2307/2092790
  • Hernán, M. A., & Robins, J. M. (2020). Causal inference: What if. Chapman & Hall/CRC.
  • Hirano, K., & Imbens, G. W. (2004). The propensity score with continuous treatments. In A. Gelman & X.-L. Meng (Eds.), Applied Bayesian modeling and causal inference from incomplete-data perspectives (pp. 73–84). Wiley. http://dx.doi.org/10.1002/0470090456.ch7
  • Hsiao, C. (2014). Analysis of panel data (3rd ed.). Cambridge University Press. http://dx.doi.org/10.1017/CBO9781139839327
  • Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. Review of Economics and Statistics, 86, 4–29. http://dx.doi.org/10.1162/003465304323023651
  • Imbens, G. W., & Rubin, D. B. (2015). Causal inference for statistics, social, and biomedical sciences. Cambridge University Press. https://doi.org/10.1017/CBO9781139025751
  • Kenny, D. A., & Zautra, A. (1995). The trait-state-error model for multiwave data. Journal of Consulting and Clinical Psychology, 63, 52–59. http://dx.doi.org/10.1037/0022-006X.63.1.52
  • Keogh, R. H., Daniel, R. M., VanderWeele, T. J., & Vansteelandt, S. (2018). Analysis of longitudinal studies with repeated outcome measures: Adjusting for time-dependent confounding using conventional methods. American Journal of Epidemiology, 187, 1085–1092. http://dx.doi.org/10.1093/aje/kwx311
  • Kessler, R. C., & Greenberg, D. F. (1981). Linear panel analysis: Models of quantitative change. Academic Press.
  • Leamer, E. E. (1985). Sensitivity analysis would help. The American Economic Review, 75, 308–313.
  • Little, T. D. (2013). Longitudinal structural equation modeling. Guilford Press.
  • Littlefield, A. K., King, K. M., Acuff, S. F., Foster, K. T., Murphy, J. G., & Witkiewitz, K. (2021). Limitations of cross-lagged panel models in addiction research and alternative models: An empirical example using project MATCH. Psychology of Addictive Behaviors, Advance online publication. https://doi.org/10.1037/adb0000750
  • Lucas, R. E. (2022). It’s time to abandon the cross-lagged panel model. PsyArXiv Preprints, https://doi.org/10.31234/osf.io/pkec7
  • Marsh, H. W., Pekrun, R., Murayama, K., Arens, A. K., Parker, P. D., Guo, J., & Dicke, T. (2018). An integrated model of academic self-concept development: Academic self-concept, grades, test scores, and tracking over 6 years. Developmental Psychology, 54, 263–280. http://dx.doi.org/10.1037/dev0000393
  • Marsh, H. W., Trautwein, U., Lüdtke, O., Köller, O., & Baumert, J. (2005). Academic self-concept, interest, grades, and standardized test scores: Reciprocal effects models of causal ordering. Child Development, 76, 397–416. http://dx.doi.org/10.1111/j.1467-8624.2005.00853.x
  • Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A model comparison perspective. Erlbaum. http://dx.doi.org/10.4324/9781410609243
  • McCrae, R. R. (2015). A more nuanced review of reliability: Specificity in the trait hierarchy. Personality and Social Psychology Review, 19, 97–112. http://dx.doi.org/10.1177/1088868314541857
  • Moral-Benito, E. (2013). Likelihood-based estimation of dynamic panels with predetermined regressors. Journal of Business & Economic Statistics, 31, 451–472. http://dx.doi.org/10.1080/07350015.2013.818003
  • Morgan, S. L., & Winship, C. (2015). Counterfactuals and causal inference: Methods and principles for social research (2nd ed.). University Press. https://doi.org/10.1017/CBO9781107587991
  • Mulder, J. D., & Hamaker, E. L. (2021). Three extensions of the random intercept cross-lagged panel model. Structural Equation Modeling, 28, 638–648. http://dx.doi.org/10.1080/10705511.2020.1784738
  • Mund, M., & Nestler, S. (2019). Beyond the cross-lagged panel model: Next-generation tools for analyzing interdependencies across the life course. Advances in Life Course Research, 41, 100249. http://dx.doi.org/10.1016/j.alcr.2018.10.002
  • Newsom, J. T. (2015). Longitudinal structural equation modeling: A comprehensive introduction. Routledge.
  • Newsome, S. J., Keogh, R. H., & Daniel, R. M. (2018). Estimating long-term treatment effects in observational data: A comparison of the performance of different methods under real-world uncertainty. Statistics in Medicine, 37, 2367–2390. http://dx.doi.org/10.1002/sim.7664
  • Núñez-Regueiro, F., Juhel, J., Bressoux, P., & Nurra, C. (2021). Identifying reciprocities in school motivation research: A review of issues and solutions associated with cross-lagged effects models. Journal of Educational Psychology, Advance online publication. http://dx.doi.org/10.1037/edu0000700
  • Oh, Y., Greenberg, M. T., & Willoughby, M. T. (2020). Examining longitudinal associations between externalizing and internalizing behavior problems at within- and between-child levels. Journal of Abnormal Child Psychology, 48, 467–480. http://dx.doi.org/10.1007/s10802-019-00614-6.
  • Orth, U., Clark, D. A., Donnellan, M. B., & Robins, R. W. (2021). Testing prospective effects in longitudinal research: Comparing seven competing cross-lagged models. Journal of Personality and Social Psychology, 120, 1013–1034. http://dx.doi.org/10.1037/pspp0000358
  • Plewis, I. (1985). Analysing change: Methods for the measurement and explanation of change in the social sciences. Wiley.
  • Reichardt, C. S. (2019). Quasi-Experimentation: A guide to design and analysis. Guilford Press.
  • Robins, J. M., Hernán, M. A., & Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology, 11, 550–560. http://dx.doi.org/10.1097/00001648-200009000-00011.
  • Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1–36. Retrieved from http://www.jstatsoft.org/v48/i02/ https://doi.org/10.18637/jss.v048.i02
  • Ruzek, E. A., & Schenke, K. (2019). The tenuous link between classroom perceptions and motivation: A within-person longitudinal study. Journal of Educational Psychology, 111, 903–917. http://dx.doi.org/10.1037/edu0000323
  • Ryu, E., & West, S. G. (2009). Level-specific evaluation of model fit in multilevel structural equation modeling. Structural Equation Modeling, 16, 583–601. http://dx.doi.org/10.1080/10705510903203466
  • Shamsollahi, A., Zyphur, M. J., & Ozkok, O. (2021). Long-run effects in dynamic systems: New tools for cross-lagged panel models. Organizational Research Methods, 2021, 109442812199322. https://doi.org/10.1177/1094428121993228
  • Silvey, C., Demir-Lira, Ö. E., Goldin-Meadow, S., & Raudenbush, S. W. (2021). Effects of time-varying parent input on children’s language outcomes differ for vocabulary and syntax. Psychological Science, 32, 536–548. http://dx.doi.org/10.1177/0956797620970559
  • Usami, S. (2021). On the differences between general cross-lagged panel model and random-intercept cross-lagged panel model: Interpretation of cross-lagged parameters and model choice. Structural Equation Modeling, 28, 331–344. http://dx.doi.org/10.1080/10705511.2020.1821690
  • Usami, S., Murayama, K., & Hamaker, E. L. (2019). A unified framework of longitudinal models to examine reciprocal relations. Psychological Methods, 24, 637–657. http://dx.doi.org/10.1037/met0000210
  • Usami, S., Todo, N., & Murayama, K. (2019). Modeling reciprocal effects in medical research: Critical discussion on the current practices and potential alternative models. PLoS One, 14, e0209133. http://dx.doi.org/10.1371/journal.pone.0209133
  • Van der Laan, M. J., & Rose, S. (2018). Targeted learning in data science: Causal inference for complex longitudinal studies. Springer. https://doi.org/10.1007/978-3-319-65304-4
  • van Montfort, K., Oud, J. H. L., & Voelkle, M. C. (Eds.). (2018). Continuous time modeling in the behavioral and related sciences. Springer Nature. http://dx.doi.org/10.1007/978-3-319-77219-6
  • VanderWeele, T. J. (2015). Explanation in causal inference: Methods for mediation and interaction. Oxford University Press.
  • VanderWeele, T. J. (2019). Principles of confounder selection. European Journal of Epidemiology, 34, 211–219. http://dx.doi.org/10.1007/s10654-019-00494-6.
  • VanderWeele, T. J. (2021). Causal inference with time-varying exposures. In T. L. Lash, T. J. VanderWeele, S. Haneuse, & K. J. Rothman (Eds.), Modern epidemiology (pp. 605–618). Wolters Kluwer.
  • VanderWeele, T. J., Hawkley, L. C., Thisted, R. A., & Cacioppo, J. T. (2011). A marginal structural model analysis for loneliness: Implications for intervention trials and clinical practice. Journal of Consulting and Clinical Psychology, 79, 225–235. http://dx.doi.org/10.1037/a0022610
  • VanderWeele, T. J., Jackson, J. W., & Li, S. (2016). Causal inference and longitudinal data: A case study of religion and mental health. Social Psychiatry and Psychiatric Epidemiology, 51, 1457–1466. http://dx.doi.org/10.1007/s00127-016-1281-9
  • VanderWeele, T. J., Mathur, M. B., & Chen, Y. (2020). Outcome-wide longitudinal designs for causal inference: A new template for empirical studies. Statistical Science, 35, 437–466. http://dx.doi.org/10.1214/19-STS728
  • Vegetabile, B. G., Griffin, B. A., Coffman, D. L., Cefalu, M., Robbins, M. W., & McCaffrey, D. F. (2021). Nonparametric estimation of population average dose-response curves using entropy balancing weights for continuous exposures. Health Services & Outcomes Research Methodology, 21, 69–110. http://dx.doi.org/10.1007/s10742-020-00236-2.
  • Williams, R., Allison, P. D., & Moral-Benito, E. (2018). Linear dynamic panel-data estimation using maximum likelihood and structural equation modeling. The Stata Journal, 18, 293–326. http://dx.doi.org/10.1177/1536867X1801800201
  • Wodtke, G. T. (2020). Regression-based adjustment for time-varying confounders. Sociological Methods & Research, 49, 906–946. http://dx.doi.org/10.1177/0049124118769087
  • Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT Press.
  • Young, C., & Holsteen, K. (2017). Model uncertainty and robustness: A computational framework for multimodel analysis. Sociological Methods & Research, 46, 3–40. http://dx.doi.org/10.1177/0049124115610347
  • Zhou, N., Cao, H., Liu, F., Wu, L., Liang, Y., Xu, J., Meng, H., Zang, N., Hao, R., An, Y., Ma, S., Fang, X., & Zhang, J. (2020). A four-wave, cross-lagged model of problematic internet use and mental health among Chinese college students: Disaggregation of within-person and between-person effects. Developmental Psychology, 56, 1009–1021. http://dx.doi.org/10.1037/dev0000907.
  • Zyphur, M. J., Allison, P. D., Tay, L., Voelkle, M. C., Preacher, K. J., Zhang, Z., Hamaker, E. L., Shamsollahi, A., Pierides, D. C., Koval, P., & Diener, E. (2020). From data to causes I: Building a general cross-lagged panel model (GCLM). Organizational Research Methods, 23, 651–687. http://dx.doi.org/10.1177/1094428119847278