1,453
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

An Evaluation of Non-Iterative Estimators in Confirmatory Factor Analysis

Pages 1-13 | Received 13 Dec 2022, Accepted 01 Mar 2023, Published online: 28 Apr 2023

References

  • Bentler, P. M. (1982). Confirmatory factor analysis via noniterative estimation: A fast, inexpensive method. Journal of Marketing Research, 19, 417–424. https://doi.org/10.1177/002224378201900403
  • Bollen, K. A. (1989). Structural equations with latent variables (vol. 210). John Wiley & Sons.
  • Bollen, K. A. (1996). An alternative two stage least squares (2sls) estimator for latent variable equations. Psychometrika, 61, 109–121. https://doi.org/10.1007/BF02296961
  • Boomsma, A. (1985). Nonconvergence, improper solutions, and starting values in lisrel maximum likelihood estimation. Psychometrika, 50, 229–242. https://doi.org/10.1007/BF02294248
  • Boyer, L., Bastuji-Garin, S., Chouaid, C., Housset, B., Le Corvoisier, P., Derumeaux, G., Boczkowski, J., Maitre, B., Adnot, S., & Audureau, E. (2018). Are systemic manifestations ascribable to copd in smokers? a structural equation modelling approach. Scientific Reports, 8, 1–8. https://doi.org/10.1038/s41598-018-26766-x
  • Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures. South African Statistical Journal, 8, 1–24. https://doi.org/10.1002/j.2333-8504.1973.tb00197.x
  • Burghgraeve, E., De Neve, J., & Rosseel, Y. (2021). Estimating structural equation models using James–Stein type shrinkage estimators. Psychometrika, 86, 96–130. https://doi.org/10.1007/s11336-021-09749-2
  • Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334. https://doi.org/10.1007/BF02310555
  • Cudeck, R. (1991). Noniterative factor analysis estimators, with algorithms for subset and instrumental variable selection. Journal of Educational Statistics, 16, 35–52. https://doi.org/10.3102/10769986016001035
  • De Jonckere, J., & Rosseel, Y. (2022). Using bounded estimation to avoid nonconvergence in small sample structural equation modelling. Structural Equation Modelling, 29, 412–427. https://doi.org/10.1080/10705511.2021.1982716
  • Devlieger, I., Talloen, W., & Rosseel, Y. (2019). New developments in factor score regression: Fit indices and a model comparison test. Educational and Psychological Measurement, 79, 1017–1037. https://doi.org/10.1177/0013164419844552
  • Enders, C. K. (2001). A primer on maximum likelihood algorithms available for use with missing data. Structural Equation Modelling, 8, 128–141. https://doi.org/10.1207/S15328007SEM0801_7
  • Fisher, Z., Bollen, K., Gates, K., Rönkkö, M. (2021). Miivsem: Model implied instrumental variable (miiv) estimation of structural equation models [Computer software manual]. https://CRAN.R-project.org/package=MIIVsem (R package version 0.5.8)
  • Fuller, W. A. (1987). Measurement error models. John Wiley & Sons.
  • Grønneberg, S., Foldnes, N., & Marcoulides, K. M. (2022). Covsim: An R package for simulating non-normal data for structural equation models using copulas. Journal of Statistical Software, 102, 1–45. https://doi.org/10.18637/jss.v102.i03
  • Guttman, L. (1944). General theory and methods for matric factoring. Psychometrika, 9, 1–16. https://doi.org/10.1007/BF02288709
  • Guttman, L. (1952). Multiple group methods for common-factor analysis: Their basis, computation, and interpretation. Psychometrika, 17, 209–222. https://doi.org/10.1007/BF02288783
  • Hägglund, G. (1982). Factor analysis by instrumental variables methods. Psychometrika, 47, 209–222. https://doi.org/10.1007/BF02296276
  • Hägglund, G. (1985). Factor analysis by instrumental variables methods: The confirmatory case. University of Uppsala, Department of Statistics.
  • Harman, H. H. (1954). The square root method and multiple group methods of factor analysis. Psychometrika, 19, 39–55. https://doi.org/10.1007/BF02288992
  • Harman, H. H. (1976). Modern factor analysis (3rd ed.). University of Chicago press.
  • Holzinger, K. J. (1944). A simple method of factor analysis. Psychometrika, 9, 257–262. https://doi.org/10.1007/BF02288737
  • Horst, P. (1937). A method of factor analysis by means of which all coordinates of the factor matrix are given simultaneously. Psychometrika, 2, 225–236. https://doi.org/10.1007/BF02287894
  • Ihara, M., & Kano, Y. (1986). A new estimator of the uniqueness in factor analysis. Psychometrika, 51, 563–566. https://doi.org/10.1007/BF02295595
  • Jennrich, R. I. (1987). Tableau algorithms for factor analysis by instrumental variable methods. Psychometrika, 52, 469–476. https://doi.org/10.1007/BF02294367
  • Kirby, J. B., & Bollen, K. A. (2009). 10 Using instrumental variable tests to evaluate model specification in latent variable structural equation models. Sociological Methodology, 39, 327–355. https://doi.org/10.1111/j.1467-9531.2009.01217.x
  • Kochenderfer, M. J., & Wheeler, T. A. (2019). Algorithms for optimization. Mit Press.
  • Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data (vol. 793). John Wiley & Sons.
  • Lussier, P., LeBlanc, M., & Proulx, J. (2005). The generality of criminal behavior: A confirmatory factor analysis of the criminal activity of sex offenders in adulthood. Journal of Criminal Justice, 33, 177–189. https://doi.org/10.1016/j.jcrimjus.2004.12.009
  • Madansky, A. (1964). Instrumental variables in factor analysis. Psychometrika, 29, 105–113. https://doi.org/10.1007/BF02289693
  • Nestler, S. (2014). How the 2 sls/iv estimator can handle equality constraints in structural equation models: A system-of-equations approach. British Journal of Mathematical and Statistical Psychology, 67, 353–369. https://doi.org/10.1111/bmsp.12023
  • Newman, D. A. (2014). Missing data: Five practical guidelines. Organizational Research Methods, 17, 372–411. https://doi.org/10.1177/1094428114548590
  • R Core Team. (2022). R: A language and environment for statistical computing [Computer software manual]. https://www.R-project.org/
  • Rosseel, Y. (2012). lavaan: An R package for structural equation modelling. Journal of Statistical Software, 48, 1–36. https://doi.org/10.18637/jss.v048.i02
  • Rosseel, Y., & Loh, W. W. (2022). A structural after measurement approach to structural equation modelling. Psychological Methods. https://doi.org/10.1037/met0000503
  • Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys (vol. 81). John Wiley & Sons.
  • Sargan, J. D. (1958). The estimation of economic relationships using instrumental variables. Econometrica, 26, 393–415. https://doi.org/10.2307/1907619
  • Savalei, V., & Bentler, P. M. (2009). A two-stage approach to missing data: Theory and application to auxiliary variables. Structural Equation Modelling, 16, 477–497. https://doi.org/10.1080/10705510903008238
  • Savalei, V., & Falk, C. F. (2014). Robust two-stage approach outperforms robust full information maximum likelihood with incomplete nonnormal data. Structural Equation Modelling, 21, 280–302. https://doi.org/10.1080/10705511.2014.882692
  • Silvey, S. D. (2017). Statistical inference. Routledge.
  • Spearman, C. (1904). ”General intelligence,” objectively determined and measured. The American Journal of Psychology, 15, 201–293. https://doi.org/10.2307/1412107
  • Stuive, I. (2007). A comparison of confirmatory factor analysis methods: Oblique multiple group method versus confirmatory common factor method [Ph.D. thesis]. University of Groningen.
  • Takane, Y., & Hwang, H. (2018). Comparisons among several consistent estimators of structural equation models. Behaviormetrika, 45, 157–188.
  • Thurstone, L. L. (1945). A multiple group method of factoring the correlation matrix. Psychometrika, 10, 73–78. https://doi.org/10.1007/BF02288876
  • Toyoda, H. (1997). A noniterative estimation in confirmatory factor analysis by an instrumental variable method. Behaviormetrika, 24, 147–158. https://doi.org/10.2333/bhmk.24.147
  • van Buuren, S., & Groothuis-Oudshoorn, K. (2011). Mice: Multivariate imputation by chained equations in r. Journal of Statistical Software, 45, 1–67.
  • Yu, H., Campbell, M. T., Zhang, Q., Walia, H., & Morota, G. (2019). Genomic Bayesian confirmatory factor analysis and Bayesian network to characterize a wide spectrum of rice phenotypes. Genes, Genomes, Genetics, 9, 1975–1986.