377
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Studying Between-Subject Differences in Trends and Dynamics: Introducing the Random Coefficients Continuous-Time Latent Curve Model with Structured Residuals

Pages 151-164 | Received 18 Nov 2022, Accepted 14 Mar 2023, Published online: 03 May 2023

References

  • Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25, 359–388. https://doi.org/10.1080/10705511.2017.1406803
  • Bianconcini, S., & Bollen, K. A. (2018). The latent variable-autoregressive latent trajectory model: A general framework for longitudinal data analysis. Structural Equation Modeling: A Multidisciplinary Journal, 25, 791–808. https://doi.org/10.1080/10705511.2018.1426467
  • Boker, S. M., Molenaar, P. C. M., & Nesselroade, J. R. (2009). Issues in intraindividual variability: Individual differences in equilibria and dynamics over multiple time scales. Psychology and Aging, 24, 858–862. https://doi.org/10.1037/a0017912
  • Bollen, K. A., & Curran, P. J. (2005). Latent curve models. John Wiley & Sons, Inc. https://doi.org/10.1002/0471746096
  • Brooks, S., Gelman, A., Jones, G. L., & Meng, X.‑L. (Eds.) (2011). Chapman & Hall. Handbook of Markov chain Monte Carlo. CRC Press. Retrieved from https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=762505
  • Cagney, K. A., & Lauderdale, D. S. (2002). Education, wealth, and cognitive function in later life. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 57, P163–P172. https://doi.org/10.1093/geronb/57.2.P163
  • Cerhan, J. R., Folsom, A. R., Mortimer, J. A., Shahar, E., Knopman, D. S., McGovern, P. G., Hays, M. A., Crum, L. D., & Heiss, G. (1998). Correlates of cognitive function in middle-aged adults. Atherosclerosis Risk in Communities (ARIC) Study Investigators. Gerontology, 44, 95–105. https://doi.org/10.1159/000021991
  • Collins, L. M. (2006). Analysis of longitudinal data: The integration of theoretical model, temporal design, and statistical model. Annual Review of Psychology, 57, 505–528. https://doi.org/10.1146/annurev.psych.57.102904.190146
  • Curran, P. J., & Bollen, K. A. (2001). The best of both worlds: Combining autoregressive and latent curve models. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 107–135). American Psychological Association. https://doi.org/10.1037/10409-004
  • Deary, I. J., Corley, J., Gow, A. J., Harris, S. E., Houlihan, L. M., Marioni, R. E., Penke, L., Rafnsson, S. B., & Starr, J. M. (2009). Age-associated cognitive decline. British Medical Bulletin, 92, 135–152. https://doi.org/10.1093/bmb/ldp033
  • Deboeck, P. R., & Boulton, A. J. (2016). Integration of stochastic differential equations using structural equation modeling: A method to facilitate model fitting and pedagogy. Structural Equation Modeling: A Multidisciplinary Journal, 23, 888–903. https://doi.org/10.1080/10705511.2016.1218763
  • Delsing, M. J. M. H., & Oud, J. H. L. (2008). Analyzing reciprocal relationships by means of the continuous-time autoregressive latent trajectory model. Statistica Neerlandica, 62, 58–82. https://doi.org/10.1111/j.1467-9574.2007.00386.x
  • Dormann, C., Guthier, C., & Cortina, J. M. (2020). Introducing continuous time meta-analysis (CoTiMA). Organizational Research Methods, 23, 620–650. https://doi.org/10.1177/1094428119847277
  • Driver, C. C., & Voelkle, M. C. (2018a). Hierarchical Bayesian continuous time dynamic modeling. Psychological Methods, 23, 774–799. https://doi.org/10.1037/met0000168
  • Driver, C. C., & Voelkle, M. C. (2018b). Understanding the time course of interventions with continuous time dynamic models. In K. Van Montfort, J. H. L. Oud, & M. C. Voelkle (Eds.), Continuous time modeling in the behavioral and related sciences (pp. 79–109). Springer International Publishing. https://doi.org/10.1007/978-3-319-77219-6_4
  • Driver, C. C., & Voelkle, M. C. (2021). Hierarchical continuous time modeling. In The handbook of personality dynamics and processes (pp. 887–908). Elsevier. https://doi.org/10.1016/B978-0-12-813995-0.00034-0
  • Fisher, G. G., Stachowski, A., Infurna, F. J., Faul, J. D., Grosch, J., & Tetrick, L. E. (2014). Mental work demands, retirement, and longitudinal trajectories of cognitive functioning. Journal of Occupational Health Psychology, 19, 231–242. https://doi.org/10.1037/a0035724
  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. Chapman and Hall; CRC. https://doi.org/10.1201/b16018
  • Gollob, H. F., & Reichardt, C. S. (1987). Taking account of time lags in causal models. Child Development, 58, 80–92. https://doi.org/10.2307/1130293
  • Gruber, J., Kogan, A., Quoidbach, J., & Mauss, I. B. (2013). Happiness is best kept stable: Positive emotion variability is associated with poorer psychological health. Emotion, 13, 1–6. https://doi.org/10.1037/a0030262
  • Haan-Rietdijk, S. d., Voelkle, M. C., Keijsers, L., & Hamaker, E. L. (2017). Discrete- vs. Continuous-time modeling of unequally spaced experience sampling method data. Frontiers in Psychology, 8, 1849. https://doi.org/10.3389/fpsyg.2017.01849
  • Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. P. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20, 102–116. https://doi.org/10.1037/a0038889
  • Hardt, K., Hecht, M., Oud, J. H. L., & Voelkle, M. C. (2019). Where have the persons gone? – An illustration of individual score methods in autoregressive panel models. Structural Equation Modeling: A Multidisciplinary Journal, 26, 310–323. https://doi.org/10.1080/10705511.2018.1517355
  • Health and Retirement Study (2022a). Cross-wave imputation of cognitive functioning measures 1992–2018, version 7.0, public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740).
  • Health and Retirement Study (2022b). Cross-wave tracker file, version 1.0, public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740).
  • Hecht, M., Hardt, K., Driver, C. C., & Voelkle, M. C. (2019). Bayesian continuous-time Rasch models. Psychological Methods, 24, 516–537. https://doi.org/10.1037/met0000205
  • Hecht, M., Horstmann, K. T., Arnold, M., Sherman, R. A., & Voelkle, M. C. (2022). Modeling dynamic personality theories in a continuous-time framework: An illustration. Journal of Personality. Advance online publication. https://doi.org/10.1111/jopy.12769
  • Hecht, M., & Voelkle, M. C. (2021). Continuous-time modeling in prevention research: An illustration. International Journal of Behavioral Development, 45, 19–27. https://doi.org/10.1177/0165025419885026
  • Hecht, M., & Zitzmann, S. (2020). A computationally more efficient Bayesian approach for estimating continuous-time models. Structural Equation Modeling: A Multidisciplinary Journal, 27, 829–840. https://doi.org/10.1080/10705511.2020.1719107
  • Hecht, M., & Zitzmann, S. (2021a). Exploring the unfolding of dynamic effects with continuous-time models: Recommendations concerning statistical power to detect peak cross-lagged effects. Structural Equation Modeling: A Multidisciplinary Journal, 28, 894–902. https://doi.org/10.1080/10705511.2021.1914627
  • Hecht, M., & Zitzmann, S. (2021b). Sample size recommendations for continuous-time models: Compensating shorter time series with larger numbers of persons and vice versa. Structural Equation Modeling: A Multidisciplinary Journal, 28, 229–236. https://doi.org/10.1080/10705511.2020.1779069
  • Hoffman, M. D., & Gelman, A. (2011). The No-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 1593–1623. https://doi.org/10.48550/arXiv.1111.4246
  • Hsiao, C. (2022). Analysis of panel data. Cambridge University Press. https://doi.org/10.1017/9781009057745
  • Jindra, C., Sachse, K. A., & Hecht, M. (2022). Dynamics between reading and math proficiency over time in secondary education – Observational evidence from continuous time models. Large-Scale Assessments in Education, 10, 1–19. https://doi.org/10.1186/s40536-022-00136-6
  • Jones, F., & Fletcher, B. C. (1996). Taking work home: A study of daily fluctuations in work stressors, effects on moods and impacts on marital partners. Journal of Occupational and Organizational Psychology, 69, 89–106. https://doi.org/10.1111/j.2044-8325.1996.tb00602.x
  • Jongerling, J., Laurenceau, J. ‑P., & Hamaker, E. L. (2015). A multilevel AR(1) model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance. Multivariate Behavioral Research, 50, 334–349. https://doi.org/10.1080/00273171.2014.1003772
  • Kenny, D. A., & Zautra, A. (1995). The trait-state-error model for multiwave data. Journal of Consulting and Clinical Psychology, 63, 52–59. https://doi.org/10.1037/0022-006X.63.1.52
  • Koval, P., Pe, M. L., Meers, K., & Kuppens, P. (2013). Affect dynamics in relation to depressive symptoms: Variable, unstable or inert? Emotion, 13, 1132–1141. https://doi.org/10.1037/a0033579
  • Koval, P., Sütterlin, S., & Kuppens, P. (2015). Emotional inertia is associated with lower well-being when controlling for differences in emotional context. Frontiers in Psychology, 6, 1997. https://doi.org/10.3389/fpsyg.2015.01997
  • Kuiper, R. M., & Ryan, O. (2020). Meta-analysis of lagged regression models: A continuous-time approach. Structural Equation Modeling: A Multidisciplinary Journal, 27, 396–413. https://doi.org/10.1080/10705511.2019.1652613
  • Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010). Emotional inertia and psychological maladjustment. Psychological Science, 21, 984–991. https://doi.org/10.1177/0956797610372634
  • Lewis, K. J. S., Tilling, K., Gordon-Smith, K., Saunders, K. E. A., Di Florio, A., Jones, L., Jones, I., O‘Donovan, M. C., & Heron, J. (2022). The dynamic interplay between sleep and mood: An intensive longitudinal study of individuals with bipolar disorder. Psychological Medicine. Advance online publication. https://doi.org/10.1017/S0033291721005377
  • Little, T. D. (2013). Longitudinal structural equation modeling. Methodology in the social sciences. Guilford Press.
  • Lohmann, J. F., Zitzmann, S., Voelkle, M. C., & Hecht, M. (2022). A primer on continuous-time modeling in educational research: An exemplary application of a continuous-time latent curve model with structured residuals (CT-LCM-SR) to PISA Data. Large-Scale Assessments in Education, 10, 1–32. https://doi.org/10.1186/s40536-022-00126-8
  • Lüdtke, O., Ulitzsch, E., & Robitzsch, A. (2021). A comparison of penalized maximum likelihood estimation and Markov Chain Monte Carlo techniques for estimating confirmatory factor analysis models with small sample sizes. Frontiers in Psychology, 12, 615162. https://doi.org/10.3389/fpsyg.2021.615162
  • MacDonald, S. W. S., Li, S. ‑C., & Bäckman, L. (2009). Neural underpinnings of within-person variability in cognitive functioning. Psychology and Aging, 24, 792–808. https://doi.org/10.1037/a0017798
  • McArdle, J. J., Fisher, G. G., & Kadlec, K. M. (2007). Latent variable analyses of age trends of cognition in the Health and Retirement Study, 1992–2004. Psychology and Aging, 22, 525–545. https://doi.org/10.1037/0882-7974.22.3.525
  • McNeish, D. (2019). Two-level dynamic structural equation models with small samples. Structural Equation Modeling: A Multidisciplinary Journal, 26, 948–966. https://doi.org/10.1080/10705511.2019.1578657
  • Nopoulos, P., Flashman, L., Flaum, M., Arndt, S., & Andreasen, N. (1994). Stability of cognitive functioning early in the course of schizophrenia. Schizophrenia Research, 14, 29–37. https://doi.org/10.1016/0920-9964(94)90006-X
  • Núñez-Regueiro, F., Juhel, J., Bressoux, P., & Nurra, C. (2022). Identifying reciprocities in school motivation research: A review of issues and solutions associated with cross-lagged effects models. Journal of Educational Psychology, 114, 945–965. https://doi.org/10.1037/edu0000700
  • Oud, J. H. L., & Delsing, M. J. M. H. (2010). Continuous time modeling of panel data by means of SEM. In K. Van Montfort, J. H. Oud, & A. Satorra (Eds.), Longitudinal research with latent variables (pp. 201–244). Springer. https://doi.org/10.1007/978-3-642-11760-2_7
  • Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of sem. Psychometrika, 65, 199–215. https://doi.org/10.1007/BF02294374
  • Oud, J. H. L., & Voelkle, M. C. (2014). Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling. Quality & Quantity, 48, 3271–3288. https://doi.org/10.1007/s11135-013-9955-9
  • Parrisius, C., Gaspard, H., Zitzmann, S., Trautwein, U., & Nagengast, B. (2022). The “situative nature” of competence and value beliefs and the predictive power of autonomy support: A multilevel investigation of repeated observations. Journal of Educational Psychology, 114, 791–814. https://doi.org/10.1037/edu0000680
  • Potter, G. G., Helms, M. J., & Plassman, B. L. (2008). Associations of job demands and intelligence with cognitive performance among men in late life. Neurology, 70, 1803–1808. https://doi.org/10.1212/01.wnl.0000295506.58497.7e
  • Ram, N., & Gerstorf, D. (2009). Time-structured and net intraindividual variability: Tools for examining the development of dynamic characteristics and processes. Psychology and Aging, 24, 778–791. https://doi.org/10.1037/a0017915
  • Raudenbush, S. W., & Bryk, A. S. (2010). Hierarchical linear models: Applications and data analysis methods (2nd ed. [Nachdr.], Advanced quantitative techniques in the social sciences, Vol. 1). Sage Publ.
  • Rodgers, W. L., Ofstedal, M. B., & Herzog, A. R. (2003). Trends in scores on tests of cognitive ability in the elderly U.S. population, 1993–2000. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 58, S338–S346. https://doi.org/10.1093/geronb/58.6.S338
  • Rosseel, Y., & Loh, W. W. (2022). A structural after measurement approach to structural equation modeling. Psychological Methods. Advance online publication. https://doi.org/10.1037/met0000503
  • Rovine, M. J., & Walls, T. A. (2006). Multilevel autoregressive modeling of interindividual differences in the stability of a process. In T. A. Walls & J. L. Schafer (Eds.), Models for intensive longitudinal data (pp. 124–147). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195173444.003.0006
  • Ryan, O., & Hamaker, E. L. (2022). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87, 214–252. https://doi.org/10.1007/s11336-021-09767-0
  • Ryan, O., Kuiper, R. M., & Hamaker, E. L. (2018). A continuous-time approach to intensive longitudinal data: What, why, and how? In K. Van Montfort, J. H. L. Oud, & M. C. Voelkle (Eds.), Continuous time modeling in the behavioral and related sciences (pp. 27–54). Springer International Publishing. https://doi.org/10.1007/978-3-319-77219-6_2
  • Scherr, P. A., Albert, M. S., Funkenstein, H. H., Cook, N. R., Hennekens, C. H., Branch, L. G., White, L. R., Taylor, J. O., & Evans, D. A. (1988). Correlates of cognitive function in an elderly community population. American Journal of Epidemiology, 128, 1084–1101. https://doi.org/10.1093/oxfordjournals.aje.a115051
  • Schultzberg, M., & Muthén, B. (2018). Number of subjects and time points needed for multilevel time-series analysis: A simulation study of dynamic structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 25, 495–515. https://doi.org/10.1080/10705511.2017.1392862
  • Schuurman, N. K., & Hamaker, E. L. (2019). Measurement error and person-specific reliability in multilevel autoregressive modeling. Psychological Methods, 24, 70–91. https://doi.org/10.1037/met0000188
  • Sivo, S., Fan, X., & Witta, L. (2005). The biasing effects of unmodeled ARMA time series processes on latent growth curve model estimates. Structural Equation Modeling: A Multidisciplinary Journal, 12, 215–231. https://doi.org/10.1207/s15328007sem1202_2
  • Sonnega, A., Faul, J. D., Ofstedal, M. B., Langa, K. M., Phillips, J. W. R., & Weir, D. R. (2014). Cohort profile: The Health and Retirement Study (HRS). International Journal of Epidemiology, 43, 576–585. https://doi.org/10.1093/ije/dyu067
  • Stan Development Team. (2022). RStan: the R interface to Stan. R package version 2.21.7. https://mc-stan.org/
  • Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. British Journal of Mathematical and Statistical Psychology, 66, 103–126. https://doi.org/10.1111/j.2044-8317.2012.02043.x
  • Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17, 176–192. https://doi.org/10.1037/a0027543
  • Walls, T. A., & Schafer, J. L. (Eds.) (2006). Models for intensive longitudinal data. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195173444.001.0001
  • Wang, L. P., Hamaker, E. L., & Bergeman, C. S. (2012). Investigating inter-individual differences in short-term intra-individual variability. Psychological Methods, 17, 567–581. https://doi.org/10.1037/a0029317
  • Zirkel, S., Garcia, J. A., & Murphy, M. C. (2015). Experience-sampling research methods and their potential for education research. Educational Researcher, 44, 7–16. https://doi.org/10.3102/0013189X14566879
  • Zitzmann, S., & Helm, C. (2021). Multilevel analysis of mediation, moderation, and nonlinear effects in small samples, using expected a posteriori estimates of factor scores. Structural Equation Modeling: A Multidisciplinary Journal, 28, 529–546. https://doi.org/10.1080/10705511.2020.1855076

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.