553
Views
196
CrossRef citations to date
0
Altmetric
Review Article

Mitochondria, oxidative stress and aging

, , &
Pages 189-198 | Received 12 Mar 1999, Published online: 07 Jul 2009

References

  • Harman D. Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology 1956; 11: 98–300
  • Sies H. Biochemistry of oxidative stress. Angewandte Chemie 1986; 25: 1058–1071
  • Harman D. Free radical theory of aging: role of free radicals in the origination and evolution of life, aging and disease processes. Free Radicals, Aging and Degenerative Diseases, J.E. Johnson, Jr., R. Walford, D. Harman, J. Miquel. Alan R. Liss, New York 1986; 3–49, In
  • Coyle J.T., Puttfarken P. Oxidative stress, glutamate and neurodegenerative disorders. Science 1993; 262: 689–695
  • Alam Z.I., Daniel S.E., Lees A.J., Marsden D.C., Jenner P., Halliwell B. A generalised increase in protein carbonyls in the brain in Parkinson's but not in incidental Lewy body disease. Journal of Neurochemistry 1997; 69: 1326–1329
  • Alam Z.I., Jenner A., Daniel S.E., Lees A.J., Cairns N., Marsden D.C., Jenner P., Halliwell B. Oxidative DNA damage in the Parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. Journal of Neurochemistry 1997; 69: 1196–1203
  • Miquel J., Economos A.C. Favorable effects of the antioxidants sodium and magnesium thiazolidine carboxylate on the vitality and life span of Drosophila and mice. Experimental Gerontology 1979; 14: 279–285
  • Viña J., Sastre J., Anton V., Bruseghini L., Esteras A., Asensi M. Effect of aging on glutathione metabolism. Protection by antioxidants. Free Radicals and Aging, I. Emerit, B. Chance. Birkhauser Verlag, BaselSwitzerland 1992; 136–144, In
  • Orr W.C., Sohal R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994; 263: 1128–1130
  • Forster M.J., Dubey A., Dawson K.M., Stutts W.A., Lal H., Sohal R.S. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proceedings of the National Academy of Sciences of the United States of America 1996; 93(10)4765–4769
  • Pallardó F.V., Asensi M., García de la Asunción J., Antón V., Lloret A., Sastre J., Viña J. Late onset administration of oral antioxidants prevents age-related loss of motor co-ordination and brain mitochondrial DNA damage. Free Radical Research 1999; 29: 617–623
  • Smith C.D., Carney J.M., Starke-Reed P.E., Oliver C.N., Stadtman E.R., Floyd R.A., Markesbery W.R. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 10540–10543
  • Sohal R.S., Agarwal S., Candas M., Forster M.J., Lal H. Effect of age and caloric restriction of DNA oxidative damage in different tissues of C57BL/6 mice. Mechanisms of Ageing and Development 1994; 76: 215–224
  • Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. Biochemical Journal 1973; 134: 707–716
  • Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiological Reviews 1979; 59: 527–604
  • Miquel J., Economos A.C., Fleming J., Johnson J.E., Jr. Mitochondrial role in cell aging. Experimental Gerontology 1980; 15: 579–591
  • Miquel J., Fleming J.E. Theoretical and experimental support for an “oxygen radical-mitochondrial injury” hypothesis of cell aging. Free Radicals, Aging and Degenerative Diseases, J.E. Johnson, Jr., R. Walford, D. Harman, J. Miquel. Alan R. Liss, New York 1986; 51–74, In
  • Corbisier P., Remacle J. Involvement of mitochondria in cell degeneration. European Journal of Cell Biology 1990; 51: 173–182
  • Harman D. The biological clock: the mitochondria. Journal of the American Geriatrics Society 1972; 20(4)145–147
  • Barja G., Cadenas S., Rojas C., Pérez-Campo R., López-Torres M. Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radical Research 1994; 21: 317–328
  • Pérez-Campo R., López-Torres M., Cadenas S., Rojas C., Barja G. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. Journal of Comparative Physiology 1998; 168(3)149–158
  • Ku H., Sohal R.S. Comparison of mitochondrial pro-oxidant and antioxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mechanisms of Ageing and Development 1993; 72: 67–76
  • Sohal R.S., Svensson I., Brunk U.T. Hydrogen peroxide production by liver mitochondria in different species. Mechanisms of Ageing and Development 1990; 53(3)209–215
  • Sohal R.S. Hydrogen peroxide production by mitochondria may be a biomarker of aging. Mechanisms of Ageing and Development 1991; 60: 189–198
  • Ku H., Brunk U.T., Sohal R.S. Relationship between mitochondrial superoxide and hydroperoxide production and longevity of mammalian species. Free Radical Biology and Medicine 1993; 15: 621–627
  • Shigenaga M.K., Hagen T.M., Ames B.N. Oxidative damage and mitochondrial decay in aging. Proceedings of the National Academy of Sciences of the United States of America 1994; 91: 10771–10778
  • Benzi G., Moretti A. Age- and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system. Free Radical Biology and Medicine 1995; 19(1)77–101
  • García de la Asunción J., Millán A., Plá R., Bruseghini L., Esteras A., Pallardó F.V., Sastre J., Viña J. Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB Journal 1996; 10: 333–338
  • Sastre J., Pallardó F.V., Plá R., Pellín A., Juan G., O'Connor E., Estrela J.M., Miquel J., Viña J. Aging of the liver: Age-associated mitochondrial damage in intact hepatocytes. Hepatology 1996; 24: 1199–1205
  • Sastre J., Millán A., García de la Asunción J., Plá R., Juan G., Pallardó F.V., O'Connor E., Martín J.A., Droy-Lefaix M.T., Viña J. A Ginkgo biloba extract (EGb 761) prevents mitochondrial aging by protecting against oxidative stress. Free Radical Biology and Medicine 1998; 24(2)298–304
  • Halliwell B., Aruoma O.I. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Letters 1991; 281: 9–19
  • Johns D.R. Mitochondrial DNA and disease. New England Journal of Medicine 1995; 333: 638–644
  • Richter C., Park J.W., Ames B. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proceedings of the National Academy of Sciences of the United States of America 1988; 85: 6465–6467
  • Suter M., Richter C. Fragmented mitochondrial DNA is the predominant carrier of oxidized DNA bases. Biochemistry 1999; 38(1)459–464
  • Shen C.C., Wertelecki W., Driggers W.J., LeDoux S.P., Wilson G.L. Repair of mitochondrial DNA damage induced by bleomycin in human cells. Mutation Research 1995; 337: 19–23
  • Croteau D.L., Bohr V.A. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. Journal of Biological Chemistry 1997; 272: 25409–25412
  • Ames B.N., Shigenaga M., Hagen T.M. Oxidants, antioxidants and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America 1993; 90: 7915–7922
  • Mecocci P., MacGarvey U., Kaufman A.E., Koontz D., Shoffner J.M., Wallace D.C., Beal M.F. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Annals of Neurology 1993; 34: 609–616
  • Gadaleta M.N., Rainaldi G., Lezza A.M., Milella F., Fracasso F., Cantatore P. Mitochondrial DNA copy number and mitochondrial DNA deletion in adult and senescent rats. Mutation Research 1992; 275: 181–193
  • Brossas J.Y., Barreau E., Courtois Y., Tréton J. Multiple deletions in mitochondrial DNA are present in senescent mouse brain. Biochemical and Biophysical Research Communications 1994; 202(2)654–659
  • Lezza A.M., Boffoli D., Scacco S., Cantatore P., Gadaleta M.N. Correlation between mitochondrial DNA 4977-bp deletion and respiratory chain enzyme activities in aging human skeletal muscles. Biochemical and Biophysical Research Communications 1994; 205: 772–779
  • Lee C.M., Weindruch R., Aiken J.M. Age-associated alterations of the mitochondrial genome. Free Radical Biology and Medicine 1997; 22(7)1259–1269
  • Luft R. The development of mitochondrial medicine. Proceedings of the National Academy of Sciences of the United States of America 1994; 91: 8731–8738
  • Wallace D.C. Mitochondrial DNA sequence variation in human evolution and disease. Proceedings of the National Academy of Sciences of the United States of America 1994; 91: 8739–8746
  • Kristal B.A., Chen J., Yu B.P. Sensitivity of mitochondrial transcription to different free radical species. Free Radical Biology and Medicine 1994; 16(3)323–329
  • Gadaleta M.N., Petruzzella V., Renis M., Fracasso F., Cantatore P. Reduced transcription of mitochondrial DNA in the senescent rat. Tissue dependence and effect of L-carnitine. European Journal of Biochemistry 1990; 187: 501–506
  • Calleja M., Peña P., Ugalde C., Ferreiro C., Marco R., Garesse R. Mitochondrial DNA remains intact during Drosophila aging, but the levels of mitochondrial transcripts are significantly reduced. Journal of Biological Chemistry 1993; 268: 18891–18897
  • Linnane A., Marzuki S., Ozawa T., Tanaka M. Mitochondrial DNA as an important contributor to ageing and degenerative diseases. Lancet 1989; 642–645
  • Sohal R.S., Dubey A. Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radical Biology and Medicine 1994; 16: 621–626
  • Gershon H., Gershon D. Detection of inactive enzyme molecules in ageing organisms. Nature 1970; 225: 1214–1217
  • Gafni A. Purification and comparative study of glyceraldehyde-3-phosphate dehydrogenase from the muscles of young and old rats. Biochemistry 1981; 20(21)6035–6040
  • Oliver C.N., Ahn B.W., Moerman E.J., Goldstein S., Stadtman E.R. Age-related changes in oxidized proteins. Journal of Biological Chemistry 1987; 262: 5488–5491
  • Gordillo E., Ayala A., Lobato M., Bautista J., Machado A. Possible involvement of histidine residues in the loss of enzymatic activity of rat liver malic enzyme during aging. Journal of Biological Chemistry 1988; 263: 8053–8056
  • Levine R.L., Oliver C.N., Fulks R.M., Stadtman E.R. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis. Proceedings of the National Academy of Sciences of the United States of America 1981; 78(4)2120–2124
  • Starke-Reed P.E., Oliver C.N. Protein oxidation and proteolysis during aging and oxidative stress. Archives of Biochemistry and Biophysics 1989; 275: 559–567
  • Stadtman E.R. Protein oxidation and aging. Science 1992; 257: 1220–1224
  • Yan L.J., Levine R.L., Sohal R.S. Oxidative damage during aging targets mitochondrial aconitase. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 11168–11172
  • Laganiere S., Yu B.P. Modulation of membrane phospholipid fatty acid composition by age and food restriction. Gerontology 1993; 39: 7–18
  • Pamplona R., Portero-Otín M., Riba D., Ruiz C., Prat J., Bellmunt M.J., Barja G. Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. Journal of Lipid Research 1998; 39: 1989–1994
  • Paradies G., Ruggiero F.M. Age-related changes in the activity of the pyruvate carrier and in the lipid composition in rat-heart mitochondria. Biochimica et Biophysica Acta 1990; 1016: 207–212
  • Ruggiero F.M., Cafagna F., Petruzzela V., Gadaleta M.N., Quagliariello E. Lipid composition in synaptic and nonsynaptic mitochondria from rat brains and effect of aging. Journal of Neurochemistry 1992; 59(2)487–491
  • Paradies G., Ruggiero F.M., Petrosillo G., Quagliariello E. Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: role of cardiolipin. FEBS Letters 1997; 406: 136–138
  • Hoch F.L. Cardiolipins and biomembrane function. Biochimica et Biophysica Acta 1992; 1113: 71–133
  • Wei Y.H. Oxidative stress and mitochondrial DNA mutations in human aging. Proceedings of the Society for Experimental Biology and Medicine 1998; 217(1)53–63
  • Poderoso J.J., Carreras M.C., Lisdero C., Riobo N., Schopfer F., Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Archives of Biochemistry and Biophysics 1996; 328: 85–92
  • Keller J.N., Kindy M.S., Holtsberg F.W., St-Clair D.K., Yen H.C., Germeyer A., Steiner S.M., Bruce-Keller A.J., Hutchins J.B., Mattson M.P. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation and mitochondrial dysfunction. Journal of Neurosciences 1998; 18: 687–697
  • Giulivi C., Poderoso J.J., Boveris A. Production of nitric oxide by mitochondria. Journal of Biological Chemistry 1998; 273: 11038–11043
  • Hagen T.M., Yowe D.L., Bartholomew J.C., Wehr C.M., Do K.L., Park J.Y., Ames B.N. Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 3064–3069
  • Corbisier P., Raes M., Michiels C., Pigeolet E., Houbion A., Delaive E., Remacle J. Respiratory activity of isolated rat liver mitochondria following in vitro exposure to oxygen species: a threshold study. Mechanisms of Ageing and Development 1990; 51: 249–263
  • D'Amore P.A., Sweet E. Effects of hyperoxia on microvascular cells in vitro. In Vitro Cellular Development Biology 1987; 23: 123–128
  • Sohal R.S., Arnold L.A., Sohal B.H. Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species. Free Radical Biology and Medicine 1990; 9(6)495–500
  • Scalettar B.A., Abney J.R., Hackenbrock C.R. Dynamics, structure and function are coupled in the mitochondrial matrix. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 8057–8061
  • Wilson P.D., Franks L.M. The effect of age on mitochondrial ultrastructure and enzymes. Advances in Experimental Medicine and Biology 1975; 53: 171–183
  • De la Cruz J., Burón I., Roncero I. Morphological and functional studies during aging at mitochondrial level. Action of drugs. International Journal of Biochemistry 1990; 22: 729–735
  • Takeyama N., Matsuo N., Tanaka T. Oxidative damage to mitochondria is mediated by the Ca2+-dependent inner membrane permeability transition. Biochemical Journal 1993; 294: 719–725
  • Beal M.F., Hyman B.T., Koroshetz W. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases?. Trends in Neurosciences 1993; 16: 125–131
  • Trounce I., Byrne E., Marzuki S. Decline in skeletal muscle mitochondrial chain function: possible factor in aging. Lancet 1989; 25: 637–639
  • Yen T.C., Chen Y.S., King K.L., Yeh S.H., Wei Y.H. Liver mitochondrial respiratory functions decline with age. Biochemical and Biophysical Research Communications 1989; 165: 994–1003
  • Paradies G., Ruggiero F.M. Effect of aging on the activity of the phosphate carrier and on the lipid composition in rat liver mitochondria. Archives of Biochemistry and Biophysics 1991; 284: 332–337
  • Tummino P.J., Gafni A. A comparative study of succinate-supported respiration and ATP/ADP translocation in liver mitochondrial from adult and old rats. Mechanisms of Ageing and Development 1991; 59: 177–188
  • Hansford R.G. Lipid oxidation by heart mitochondria from young adult and senescent rats. Biochemical Journal 1978; 170: 285–295
  • Nohl H., Kramer R. Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mechanisms of Ageing and Development 1980; 14: 137–144
  • Hansford R.G., Castro F. Effect of senescence on Ca++-ion transport by heart mitochondria. Mechanisms of Ageing and Development 1982; 19: 5–13
  • Kim J.H., Woldgiorgis G., Elson C.E., Shrago E. Age-related changes in respiration coupled to phosphorylation. I. Hepatic mitochondria. Mechanisms of Ageing and Development 1988; 46: 263–277
  • Heales S.J., Bolanos J.P., Stewart V.C., Brookes P.S., Land J.M., Clark J.B. Nitric oxide, mitochondria and neurological disease. Biochimica et Biophysica Acta 1999; 1410: 215–228
  • Bolanos J.P., Almeida A., Stewart V., Peuchen S., Land J.M., Clark J.B., Heales S.J. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. Journal of Neurochemistry 1997; 68: 2227–2240
  • Beal M.F. Excitotoxicity and nitric oxide in Parkinson's disease pathogenesis. Annals of Neurology 1998; 44(3 Suppl. 1)S110–S114
  • Leist M., Nicotera P. Apoptosis, excitotoxicity and neuropathology. Experimental Cell Research 1998; 239: 183–201
  • Bolanos J.P., Heales S.J., Peuchen S., Barker J.E., Land J.M., Clark J.B. Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radical Biology and Medicine 1996; 21: 995–1001
  • Richter C., Gogvadze V., Laffranchi R., Schlapbach R., Scheizer M., Suter M., Walter P., Yaffee M. Oxidants in mitochondria: from physiology to disease. Biochimica et Biophysica Acta 1995; 1271: 67–74
  • Giulivi C. Functional implications of nitric oxide produced by mitochondria in mitochondrial metabolism. Biochemical Journal 1998; 332: 673–679
  • Cleeter M.W., Cooper J.M., Darley-Usmar V.M., Moncada S., Schapira A.H. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Letters 1994; 345: 50–54
  • Brown G.C. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Letters 1995; 369: 136–139
  • Lizasoain I., Moro M.A., Knowles R.G., Darley-Usmar V., Moncada S. Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochemical Journal 1996; 314: 877–880
  • Sharpe M.A., Cooper C.E. Interaction of peroxy-nitrite with mitochondrial cytochrome oxidase. Catalytic production of nitric oxide and irreversible inhibition of enzyme activity. Journal of Biological Chemistry 1998; 273: 30961–30972
  • Cassina A., Radi R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Archives of Biochemistry and Biophysics 1996; 328: 309–316
  • Richter C., Schweizer M., Cossarizza A., Franceschi C. Control of apoptosis by the cellular ATP level. FEBS Letters 1996; 378: 107–110
  • Brown G.C. Nitric oxide inhibition of cytochrome oxidase and mitochondrial respiration: implications for inflammatory, neurodegenerative and ischaemic pathologies. Molecular and Cellular Biochemistry 1997; 174: 189–192
  • Schulz J.B., Matthews R.T., Klockgether T., Dichgans J., Beal M.F. The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases. Molecular and Cellular Biochemistry 1997; 174: 193–197
  • Uehara T., Kikuchi Y., Nomura Y. Caspase activation accompanying cytochrome c release from mitochondria is possibly involved in nitric oxide-induced neuronal apoptosis in SH-Sy5Y cells. Journal of Neurochemistry 1999; 72: 196–205
  • Packer M.A., Miesel R., Purphy M.P. Exposure to the parkinsonian neurotoxin 1-methyl-4-phenyl-pyridinium (MPP+) and nitric oxide simultaneously causes cyclosporin A-sensitive mitochondrial calcium efflux and depolarisation. Biochemical Pharmacology 1996; 51: 267–273
  • Balakirev M.Y., Khramtsov V.V., Zimmer G. Modulation of the mitochondrial permeability transition by nitric oxide. European Journal of Biochemistry 1997; 246: 710–718
  • Hortelano S., Dallaporta B., Zamzami N., Hirsch T., Susin S.A., Marzo I., Bosca L., Kroemer G. Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Letters 1997; 410: 373–377
  • Furukawa T., Meydani S.N., Blumberg J.B. Reversal of age-associated decline in immune responsiveness by dietary glutathione supplementation in mice. Mechanisms of Ageing and Development 1987; 38: 107–117
  • Drieu K. Préparation et définition de l'extrait de Ginkgo biloba. Presse Medicale 1986; 15: 1455–1457
  • Gardés-Albert M., Ferradini C., Sekaki A., Droy-Lefaix M.T. Oxygen-centered free radicals and their interactions with EGb 761 or CP 202. Advances in Ginkgo biloba Extract Research, C. Ferradini, M.T. Droy-Lefaix, C. Christen. Elsevier, Paris 1993; 2: 1–11, In Ginkgo biloba Extract (EGb 761) as a Free Radical Scavenger
  • Marcocci L., Packer L., Droy-Lefaix M.T., Sekaki A., Gardes-Albert M. Antioxidant action of Ginkgo biloba extract EGb 761. Methods in Enzymology 1994; 234: 462–475
  • Saija A., Scalese M., Lanza M., Marzullo D., Bonina F., Castelli F. Flavonoids as antioxidant agents: Importance of their interaction with biomembranes. Free Radical Biology and Medicine 1995; 19(4)481–486

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.