253
Views
157
CrossRef citations to date
0
Altmetric
Review Article

Urinary 8-oxo-2′-deoxyguanosine — Source, significance and supplements

, , &
Pages 381-397 | Received 15 Oct 1999, Published online: 07 Jul 2009

References

  • Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine3rd edn. Clarendon Press, Oxford 1999, Oxford
  • Wiseman H., Kaur H., Halliwell B. DNA damage and cancer, measurement and mechanism. Cancer Letters 1995; 93: 113–120
  • Halliwell B. Current status review, free radicals, reactive oxygen species and human disease, a critical evaluation with special reference to atherosclerosis. British Journal of Experimental Pathology 1989; 70: 737–757
  • Wolff S.P., Garner A., Dean R.T. Free radicals, lipids and protein degradation. Trends in Biological Sciences January, 1986; 27–31
  • Frenkel K., Karkoszka J., Kim E., Taioli E. Recognition of oxidised DNA bases by sera of patients with inflammatory diseases. Free Radical Biology and Medicine 1993; 14: 483–494
  • Kensler T.W., Taffe B.G. Free radicals in tumour promotion. Advances in Free Radical Biology and Medicine 1986; 2: 347–387
  • Floyd R.A. The role of 8-hydroxyguanine in carcinogenesis. Carcinogenesis 1990; 11: 1447–1450
  • Bunker V.W. Free radicals, antioxidants and ageing. Medical Laboratory Science 1992; 49: 299–312
  • Barnett Y.A., King C.M. An investigation of antioxidant status, DNA repair capacity and mutation as a function of age in humans. Mutation Research 1995; 338: 115–128
  • Lunec J., Herbert K.E., Blount S., Griffiths H.R., Emery P. 8-Hydroxydeoxyguanosine, a marker of oxidative DNA damage in systemic lupus erythematosus. FEBS Letters 1994; 348: 131–138
  • Cooke M.S., Mistry N., Wood C., Herbert K.E., Lunec J. Immunogenicity of DNA damaged by reactive oxygen species — implications for anti-DNA antibodies in Lupus. Free Radical Biology and Medicine 1997; 22: 151–159
  • Sies H. Introduction. Oxidative Stress — Oxidants and Antioxidants, H. Sies. Academic Press, London 1991; 1–1, In
  • Ward J.F., Evans J.W., Limoli C.L., Calabro-Jones P.M. Radiation and hydrogen peroxide induced free radical damage to DNA. British Journal of Cancer 1987; 55: 105–112
  • Dizdaroglu M. Chemical determination of free radical-induced damage to DNA. Free Radical Biology and Medicine 1991; 10: 225–242
  • Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research 1997; 387: 147–163
  • Floyd R.A., Watson J.J., Wong P.K., Altmiller D.H., Rickard R.C. Hydroxyl free radical adduct of deoxyguanosine, sensitive detection and mechanism of formation. Free Radical Research 1986; 1: 163–172
  • Halliwell B., Dizdaroglu M. The measurement of oxidative damage to DNA by HPLC and GC/MS techniques. Free Radical Research 1992; 16: 75–87
  • Devanaboyina U.-S., Gupta R.C. Sensitive detection of 8-hydroxy-2′-deoxyguanosine in DNA by 32P-postlabelling assay and the basal levels in rat tissues. Carcinogenesis 1996; 17: 917–924
  • Cooke M., Herbert K. Immunochemical detection of 8-oxodeoxyguanosine in DNA. A Handbook of Clinical Analysis, J. Lunec, 2000, In (in press).
  • Herbert K.E., Lunec J. Progress in the immunodetection of products of oxidative damage to DNA. DNA and Free Radicals, Techniques, Mechanisms and Applications, O.I. Aruoma, B. Halliwell. OICA International. 1999; 1–14, In
  • Pflaum M., Will O., Epe B. Determination of steady-state levels of oxidative DNA base modifications in mammalian cells by means of repair endonucleases. Carcinogenesis 1997; 18: 2225–2231
  • Fraga C.G., Shigenaga M.K., Park J.W., Ames B.N. Oxidative damage to DNA during ageing, 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proceedings of the National Academy of Sciences, USA 1990; 87: 4533–4537
  • Kuchino Y., Mori F., Kasai H., Inoue S., Miura K., Ohtsuka E., Nishimura S. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature 1987; 327: 77–79
  • Shibutani S., Takeshita M., Grollman A.P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 1991; 349: 431–434
  • Wood M.L., Dizdaroglu M., Gajewski E., Essignmann J.M. Mechanistic studies of ionising radiation and oxidative mutagenesis genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 1990; 29: 7024–7032
  • Cheng K.C., Cahill D.S., Kasai H., Nishimura S., Loeb L.A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G → T and A → C substitutions. Journal of Biological Chemistry 1992; 267: 166–172
  • Lipscomb L.A., Peek M.E., Morningstar M.L., Verghis S.M., Miller E., Rich A., Essigmann J.M., Williams L.D. X-ray structure of a DNA decamer containing 7,8-dihydro-8-oxoguanine. Proceedings of the National Academy of Sciences, USA 1995; 92: 719–723
  • Wood M.L., Esteve A., Morningstar M.L., Kuziemk G.M., Essigmann J.M. Genetic effects of oxidative DNA damage, comparative mutagenesis of 7,8-dihydro-8-oxoguanine and 7,8-dihydro-8-oxoadenine in Escherichia coli. Nucleic Acids Research 1992; 20: 6023–6032
  • Sancar A. DNA repair in humans. Ann. Rev. Genetics 1995; 29: 69–105
  • Demple B., Harrison L. Repair of oxidative damage to DNA, enzymology and biology. Annual Review of Biochemistry 1995; 63: 915–948
  • Czeczot H., Tudek B., Lambert B., Laval J., Boiteux S. Escherichia coli Fpg protein and UvrABC endonuclease repair DNA damage induced by methylene blue plus visible light in vivo and in vitro. Journal of Bacteriology 1991; 173: 3419–3424
  • Muller E., Boiteux S., Cunningham R.P., Epe B. Enzymatic recognition of DNA modifications induced by singlet oxygen and photosensitisers. Nucleic Acids Research 1991; 18: 5969–5973
  • Boiteux S., Gajewski E., Laval J., Dizdaroglu M. Substrate specificity of the Escherichia coli Fpg protein (formamidopyrimidine — DNA glycosylase), excision of purine lesions in DNA produced by ionising radiation or photosensitisation. Biochemistry 1992; 31: 106–110
  • Tchou J., Grollman A.P. Repair of DNA containing the oxidatively-damaged base, 8-oxoguanine. Mutation Research 1993; 299: 277–287
  • Kim H.-S., Park Y.-W., Kasai H., Nishimura S., Park C.-W., Choi K.-H., Chung M.-H. Induction of E. coli oh8Gua endonuclease by oxidative stress: its significance in aerobic life. Mutation Research 1996; 363: 115–124
  • van der Kemp P.A., Thomas D., Barbey R., De Oliveira R., Boiteux S. Cloning and expression in Eseherichia coli of the Ogg1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylfor-mamidopyrimidine. Proceedings of the National Academy of Sciences, USA 1996; 93: 5197–5202
  • Girard P.-M., Guibourt N., Boiteux S. The Ogg1 protein of Saccharomyces cerevisiae, a 7,8-dihydro-8-oxoguanine DNA glycosylase/AP lyase whose lysine 241 is a critical residue for catalytic activity. Nucleic Acids Research 1997; 25: 3204–3211
  • Girard P.-M., D'Ham C., Cadet J., Boiteux S. Opposite base-dependent excision of 7,8-dihydro-8-oxoadenine by the Ogg1 protein of Saccharomyces cerevisiae. Carcinogenesis 1998; 19: 1299–1305
  • Arai K., Morishita K., Shinmura K., Kohno T., Kim S.-R., Nohmi T., Taniwaki M., Ohwada S., Yokota J. Cloning of a human homolog of the yeast OGG1 gene that is involved the repair of oxidative DNA damage. Oncogene 1997; 14: 2857–2861
  • Lu R., Nash H.M., Verdine G.L. A mammalian DNA repair enzyme that excises oxidatively damage guanines maps to a locus frequently lost in lung cancer. Current Biology 1997; 7: 397–407
  • Rosenquist T.A., Zharkov D.O., Grollman A.P. Cloning and characterisation of a mammalian 8-oxyguanine DNA glycosylase. Proceedings of the National Academy of Sciences, USA 1997; 94: 7429–7434
  • Aburatani H., Hippo Y., Takashima T., Matsuba C., Kodama T., Takao M., Yasui A., Yamamoto K., Asano M., Fukasawa K., Yoshinari T., Inoue H., Ohtsuka E., Nishimura S. Cloning and characterisation of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue. Cancer Research 1997; 57: 2151–2156
  • Tani M., Shinmura K., Kohno T. Genomic structure and chromosomal localisation of the mouse Ogg1 gene that is involved in the repair of 8-hydroxyguanine in DNA damage. Mammalian Genome 1998; 9: 32–37
  • Roldán-Arjona T., Wei Y.-F., Carter K.C., Klungland A., Anselmino C., Wang R.-P., Augustus M., Lindahl T. Molecular cloning and functional expression of a human cDNA encoding for the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proceedings of the National Academy of Sciences, USA 1997; 94: 8016–8020
  • Radicella J.P., Dherin C., Desmaze C., Fox M.S., Boiteux S. Cloning and characterisation of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, USA 1997; 94: 8010–8015
  • Nash H.M., Bruner S.D., Schärer O.D., Kawate T., Addona T.A., Spooner E., Lane W.S., Verdine G.L. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Current Biology 1996; 6: 968–980
  • Bruner S.D., Nash H.M., Lane W.S., Verdine G.L. Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Current Biology 1998; 8: 393–403
  • Hazra T.K., Izumi T., Maidt L., Floyd R.A., Mitra S. The presence of two distinct 8-oxoguanine repair enzymes in human cells, their potential complementary role in preventing mutation. Nucleic Acids Research 1998; 26: 5116–5122
  • Chevillard S., Radicella J.P., Levalois C., Lebeau J., Poupon M.-F., Oudard S., Dutrillaux B., Boiteux S. Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours. Oncogene 1998; 16: 3083–3086
  • Tsurudome Y., Hirano T., Yamato H., Tanaka I., Sagai M., Hirano H., Nagata N., Itoh H., Kasai H. Changes in levels of 8-hydroxyguanine in DNA, its repair and OGG1 mRNA in rat lungs after intratracheal administration of diesel exhaust particles. Carcinogenesis 1999; 20: 1573–1576
  • Lee H.-S., Lee Y.-S., Kim H.-S., Choi J.-Y., Hassan H.M., Chung M.-H. Mechanism of regulation of 8-hydroxyguanine endonuclease by oxidative stress: roles of FNR, ArcA and Fur. Free Radical Biology and Medicine 1998; 24: 1193–1201
  • Bessho T., Tano K., Kasai H., Ohtsuka E., Nishimura S. Evidence for two DNA repair enzymes for 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) in human cells. Journal of Biological Chemistry 1993; 268: 19416–19421
  • Bessho T., Roy R., Yamamoto K., Nishimura S., Tano K., Mitra S. Repair of 8-hydroxyguanine in DNA by mammalian N-methyl purine-DNA glycosylase. Proceedings of the National Academy of Sciences, USA 1993; 90: 8901–8904
  • Huang J.-C., Hsu D.S., Kazantsev A., Sancar A. Substrate spectrum of human excinuclease, repair of abasic sites, methylated bases, mismatches and bulky adducts. Proceedings of the National Academy of Sciences, USA 1994; 91: 12213–12217
  • Dianov G., Bischoff C., Piotrowski J., Bohr V.A. Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts. Journal of Biological Chemistry 1998; 273: 33811–33816
  • Scott A.D., Neishabury M., Jones D.H., Reed S.H., Boiteux S., Waters R. Spontaneous mutation, oxidative DNA damage and the roles of base and nucleotide excision repair in the yeast Saccharomyces cerevisiae. Yeast 1999; 15: 205–218
  • Jaiswal M., Lipinski L.J., Bohr V.A., Mazur S.J. Efficient in vitro repair of 7-hydro-8-oxodeoxyguanosine by human cell extracts: involvement of multiple pathways. Nucleic Acids Research 1998; 26: 2184–2191
  • Lipinski L.J., Hoehr N., Mazur S.J., Dianov G.L., Sentürker S., Dizdaroglu M., Bohr V.A. Repair of oxidative DNA base lesions induced by fluorescent light is defective in xeroderma pigmentosum group A cells. Nucleic Acids Research 1999; 27: 3153–3158
  • Sancar A., Tang M.-S. Nucleotide excision repair. Photochemistry and Photobiology 1993; 57: 905–921
  • Chung M.H., Kim H.-S., Ohtsuka E., Kasai H., Yamamoto F., Nishimura S. An endonuclease activity in human polymorphonuclear neutrophils that removes 8-hydroxyguanine residues from DNA. Biochemistry Biophysics Research Communications 1991; 178: 1472–1478
  • Reardon J.T., Bessho T., Kung H.C., Bolton P.H., Sancar A. In vitro repair of oxidative DNA damage by human nucleotide excision repair system, possible explanation for neurodegeneration in Xeroderma pigmentosum patients. Proceedings of the National Academy of Sciences, USA 1997; 294: 9463–9468
  • Michaels M.L., Miller J.H. The GO system protects organisms from the mutagenic effects of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-oxoguanine). Journal of Bacteriology 1992; 174: 6321–6325
  • Huang J.C., Svoboda D.L., Reardon J.T., Sancar A. Human nucleotide excision nuclease removes thymine dimers from DNA incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer. Proceedings of the National Academy of Sciences, USA 1992; 89: 3664–3668
  • Galloway A.M., Liuzzi M., Paterson M.C. Metabolic processing of cyclobutyl pyrimidine dimers and (6-4) photoproducts in UV-treated human cells. Evidence for distinct excision-repair pathways. Journal of Biological Chemistry 1994; 269: 974–980
  • Holmes J., Clark S., Modrich P. Strand-specific mismatch repair correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proceedings of the National Academy of Sciences, USA 1992; 87: 5837–5841, 1992
  • McGoldrick J.P., Yeh Y.C., Solomon M., Essigman J.M., Lu A.-L. Characterisation of a mammalian homolog of the Escherichia coli Mut Y mismatch repair protein. Molecular Cellular Biology 1995; 15: 989–996
  • Zhang Q.-M., Ishikawa N., Nakahra T., Yonei S. Escherichia coli Mut Y protein has a guanine-DNA glycosylase that acts on 7,8-dihydro-8,-oxoguanine, guanine mispair to prevent spontaneous GC → CG transversions. Nucleic Acids Research 1998; 26: 4669–4675
  • Slupska M.M., Baikalov C., Luther W.M., Chiang J.-H., Wei Y.-F., Miller J.H. Cloning and sequencing a human homolog (hMYH) of the Eseherichia coli mut Y gene whose function is required for the repair of oxidative DNA damage. Journal of Bacteriology 1996; 178: 3885–3892
  • Mo J.-Y., Maki H., Sekiguchi M. Hydrolytic elimination of a mutagenic nucleotide, 8-oxodGTP, by human 18-kilodalton protein, sanitisation of the nucleotide pool. Proceedings of the National Academy of Sciences, USA 1992; 89: 11021–11025
  • Bialkowski K., Kasprzak K.S. A novel assay of 8-oxo-2′-deoxyguanosine 5′-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activity in cultured cells and its use for evaluation of cadmium(II) inhibition of this activity. Nucleic Acids Research 1998; 26: 3194–3201
  • Maki H., Sekiguchi M. Mut T protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 1992; 355: 273–275
  • Wani G., D'Ambrosio S.M. Cell type-specific expression of human 8-oxo-7,8-dihydroguanosine triphosphatase in normal breast and skin tissues in vivo. Carcinogenesis 1995; 16: 277–283
  • Kobayashi M., Ohara-Nemoto Y., Kaneko M., Hayakawa H., Sekiguchi M., Yamamoto K. Potential of Escherichia coli GTP cyclohydrolase II for hydrolysing 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. Journal of Biological Chemistry 1998; 273: 26394–26399
  • Hayakawa H., Taketomi A., Sakumi K., Kuwano M., Sekiguchi M. Generation and elimination of 8-oxo-7,8-dihydro-2′-deoxyguanosine 5′-triphosphate, a mutagenic substrate for DNA synthesis, in human cells. Biochemistry 1995; 34: 89–95
  • Bestwick R.K., Moffett G.L., Mathews C.K. Selective expansion of mitochondrial nucleoside triphosphate pools in antimetabolite-treated HeLa cells. Journal of Biological Chemistry 1982; 257: 9300–9304
  • Kang D., Nishida J.-I., Iyama A., Nakabeppu Y., Furuichi M., Fujiwara T., Sekiguchi M., Takeshige K. Intracellular localisation of 8-oxo-dGTPase in human cells, with special reference to the role of mitochondria. Journal of Biological Chemistry 1995; 270: 14659–14665
  • Kamiya H., Kasai H. Formation of 2-hydroxy-deoxyadenosine triphosphate, an oxidatively damage nucleotide, and its incorporation by DNA polymerases. Journal of Biological Chemistry 1995; 270: 19446–19450
  • Fujikawa K., Kamiya H., Kasai H. The mutations induced by oxidatively damaged nucleotides, 5-formyl-dUTP and 5-hydroxyl-dCTP, in Escheichia coli. Nucleic Acids Research 1998; 26: 4582–4587
  • Fujikawa K., Kamiya H., Yakushiji H., Fujii Y., Nakabeppu Y., Kasai H. The oxidised forms of dATP are substrates for the human MutT homologue, the hMTH1 protein. Journal of Biological Chemistry 1999; 274: 18201–18205
  • Lindhal T. Instability and decay of the primary structure of DNA. Nature 1993; 362: 709–715
  • Shigenaga M.K., Gimeno C.J., Ames B.N. Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proceedings of the National Academy of Sciences, USA 1989; 86: 9697–9701
  • Tagesson C., Källberg M., Leanderson P. Determination of urinary 8-hydroxydeoxyguanosine by coupled-column high-performance liquid chromatography with electrochemical detection, a noninvasive assay for in vivo oxidative DNA damage in humans. Toxicological Methods 1992; 1: 242–251
  • Loft S., Vistisen K., Ewertz M., Tjonneland A., Overvad K., Poulsen H.E. Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans, influence of smoking, gender and body mass index. Carcinogenesis 1992; 13: 2241–2247
  • Bogdanov M.B., Beal M.F., McCabe D.R., Griffin R.M., Matson W. A carbon column based LCEC approach to routine 8-hydroxy-2′-deoxyguanosine measurements in urine and other biological matrices. Free Radical Biology and Medicine 1999; 27: 647–666
  • Degan P., Shigenaga M.K., Park E.-M., Alperin P.E., Ames B.N. Immunoaffinity isolation of urinary 8-hydroxy-2′-deoxyguanosine and 8-hydroxyguanine and quantitation of 8-hydroxy-2′-deoxyguanosine in DNA by polyclonal antibodies. Carcinogenesis 1991; 12: 865–871
  • Park E.M., Shigenaga M.K., Degan P., Korn T.S., Kitzler J.W., Weher C.M., Kolachana P., Ames B.N. Assay of excised oxidative DNA lesions, isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proceedings of the National Academy of Sciences, USA 1992; 89: 3375–3379
  • Erhola M., Toyokuni S., Okada K., Tanaka T., Hiai H., Ochi H., Uchida K., Osawa T., Neiminen M.M., Alho H., Kellokumpu-Lehtinen P. Biomarker evidence of DNA oxidation in lung cancer patients, association of urinary 8-hydroxy-2′-deoxyguanosine excretion with radiotherapy, chemotherapy and response to treatment. FEBS Letters 1997; 409: 287–291
  • Evans M.D., Cooke M.S., Podmore I.D., Zheng Q., Herbert K.E., Lunec J. Discrepancies in the measurement of UVC-induced 8-oxo-2′deoxyguanosine, implications for the analysis of oxidative DNA damage. Biochemical Biophysical Research Communications 1999; 259: 374–378
  • Teixeira A.J.R., Ferreira M.R., van Dijk W.J., van de Werken G., de Jong A.P.J.M. Analysis of 8-hydroxy-2′-deoxyguanosine in rat urine and liver DNA by stable isotope-dilution gas chromatography/mass spectrometry. Analytical Biochemistry 1995; 226: 307–319
  • Holmberg I., Stål P., Hamberg M. Quantitative determination of 8-hydroxydeoxyguanosine in human urine by isotope dilution mass spectrometry, normal levels in hemochromatosis. Free Radical Biology and Medicine 1999; 26: 129–135
  • Ravanat J.-L., Guicherd P., Tuce Z., Cadet J. Simultaneous determination of five oxidative DNA lesions in human urine. Chemical Research in Toxicology 1999; 12: 802–808
  • Ravanat J.-L., Duretz B., Guiller A., Douki T., Cadet J. Isotope dilution high-performance liquid chromatography-electrospray tandem mass spectrometry assay for the measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in biological samples. Journal of Chromatography 1998; 715: 349–356
  • Hariharan P.V., Cerutti P.A. Excision of damaged thymine residues from gamma-irradiated poly(dA-dT) by crude extracts of Escherichia coli. Proceedings of the National Academy of Sciences, USA 1974; 71: 3532–3536
  • Bergtold D.S., Simic M.G., Alessio H., Cutler R.G. Urine biomarkers for oxidative DNA damage. Oxygen Radicals in Biology and Medicine, M.G. Simic, K.A. Taylor, J.F. Ward, C. Von Sonntag. Plenum, New York 1988; 483–490, In
  • Cathcart R., Schwiers E., Saul R.L., Ames B.N. Thymine glycol and thymidine glycol in human and rat urine. A possible assay for oxidative DNA damage. Proceedings of the National Academy of Sciences, USA 1984; 81: 5633–5637
  • Lagorio S., Tagesson C., Forastiere F., Iavarone I., Axelson O., Carere A. Exposure to benzene and urinary concentrations of 8-hydroxydeoxyguanosine, a biological marker of oxidative damage to DNA. Occupational and Environmental Medicine 1984; 51: 739–743
  • Yamamoto T., Hosokawa K.-I., Tamura T., Kanno H., Urabe M., Honjo H. Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels in women with or without gynaecologic cancer. Journal of Obstetric and Gynaecological Research 1996; 22: 359–363
  • Cooke M.S., Evans M.D., Podmore I.D., Herbert K.E., Mistry N., Mistry P., Hickenbotham P.T., Hussieni A., Griffiths H.R., Lunec J. Novel repair action of vitamin C upon in vivo oxidative DNA damage. FEBS Letters 1998; 363: 363–367
  • Germadnik D., Pilger A., Rüdiger H.W. Assay for the determination of urinary 8-hydroxy-2′-deoxyguanosine by high-performance liquid chromatography with electrochemical detection. Journal of Chromatography B 1997; 689: 399–403
  • Tagesson C., Källberg M., Wingren G. Urinary malondialdehyde and 8-hydroxydeoxyguanosine as potential markers of oxidative stress in industrial art glass workers. International Archives of Occupational and Environmental Health 1996; 69: 5–13
  • Poulsen H.E., Loft S., Prieme H., Vistisen K., Lykkesfeldt J., Nyyssonen K., Salonen J.T. Oxidative DNA damage in vivo, relationship to age, plasma antioxidants, drug metabolism, glutathione-S-transferase activity and urinary creatinine excretion. Free Radical Research 1998; 29: 565–571
  • Toyokuni S., Tanaka T., Hattori Y., Nishiyama Y., Yoshida A., Uchida K., Hiai H., Ochi H., Osawa T. Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45. 1, its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Laboratory Investigation 1997; 76: 365–374
  • Ahmed N.U., Ueda M., Nikaido O., Osawa T., Ichihashi M. High levels of 8-hydroxy-2′-deoxyguanosine appear in normal human epidermis after a single dose of ultraviolet radiation. British Journal of Dermatology 1999; 140: 226–231
  • Tsuboi H., Kouda K., Takeuchi H., Takigawa M., Masamoto Y., Takeuchi M., Ochi H. 8-Hydroxydeoxyguanosine in urine as an index of oxidative damage to DNA in the evaluation of atopic dermatitis. British Journal of Dermatology 1998; 138: 1033–1035
  • Takahashi S., Hirose M., Tamano S., Ozaki M., Orita S.-I., Ito T., Takeuchi M., Ochi H., Fukada S., Kasai H., Shirai T. Immunohistochemical detection of 8-hydroxy-2′-deoxyguanosine in paraffin-embedded sections of rat liver after carbon tetrachloride treatment. Toxicological Pathology 1998; 26: 247–252
  • Witherall H.L., Hiatt R.A., Replogle M., Parsonnet J. Helicobacter pylori and urinary excretion of 8-hydroxy-2-deoxyguanosine, an oxidative DNA adduct. Cancer Epidemiology Biomarkers and prevention 1998; 7: 91–96
  • Leinonen J., Lehtimäki T., Toyokuni S., Okada K., Tanaka T., Hiai H., Ochi H., Laippala P., Rantalaiho V., Wirta O., Pasternack A., Alho H. New biomarker evidence of oxidative DNA damage in patients with non-insulin diabetes mellitus. FEBS Letters 1997; 417: 150–152
  • Kantha S.S., Wada S.-I., Tanaka H., Takeuchi M., Watabe S., Ochi H. Carnosine sustains the retention of cell morphology in continuous fibroblast culture subjected to nutritional insult. Biochemical and Biophysical Research Communications 1996; 223: 278–282
  • Loft S., Poulsen H.E. Cancer risk and oxidative DNA damage in man. Journal of Molecular Medicine 1996; 74: 297–312
  • Zhang J., Perry G., Smith M.A., Robertson D., Olson S.J., Graham D.G., Montine T.J. Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in Substantia Nigra neurons. American Journal of Pathology 1999; 154: 1423–1429
  • Nunomura A., Perry G., Pappolla M.A., Wade R., Hirai K., Chiba S., Smith M.A. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer's disease. Journal of Neuroscience 1999; 19: 1959–1964
  • Witt E.H., Reznick A.Z., Viguie C.A., Starke-Reed P., Packer L. Exercise, oxidative damage and effects of antioxidant manipulation. Journal of Nutrition 1992; 122: 766–773
  • Gehrke C.W., Kuo K.C., Waalkes T.P., Borek E. Patterns of urinary excretion of modified nucleosides. Cancer Research 1979; 39: 1150–1153
  • Schoch G., Heller-Schoch G., Muller J., Heddrich M., Gruttner R. Determination of RNA metabolism as an indicator of nutritional status. Klinische Padiatrie 1982; 194: 317–319
  • Cundy K.C., Kohen R., Ames B.N. Determination of 8-hydroxydeoxyguanosine in human urine. A possible assay for in vivo oxidative DNA damage. Oxygen Radicals in Biology and Medicine, M.G. Simic, K.A. Taylor, J.F. Ward, C. Von Sonntag. Plenum, New York 1989; 479–482, In
  • Simic M.G. Urinary biomarkers and the rate of DNA damage in carcinogenesis and anticarcinogenesis. Mutation Research 1992; 267: 277–290
  • Loft S., Fischer-Nielsen A., Jeding I.B., Vistisen K., Poulsen H.E. 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. Journal of Toxicology and Environmental Health 1993; 40: 391–404
  • Roth M., Emmons L.R., Haner M., Muller H.J., Boyle J.M. Age-related decrease in an early step of DNA-repair of normal human lymphocytes exposed to ultraviolet-irradiation. Experimental Cell Research 1989; 180: 171–177
  • Sangeetha P., Das U.N., Koratkar R., Suryaprabha P. Increase in free radical generation and lipid peroxidation following chemotherapy in patients with cancer. Free Radical Biology and Medicine 1990; 8: 15–19
  • Brown R.K., McBurney A., Lunec J., Kelly F.J. Oxidative damage to DNA in patients with cystic fibrosis. Free Radical Biology and Medicine 1995; 18: 801–806
  • Okamura K., Doi T., Sakurai M., Hamada K., Yoshioka Y., Sumida S., Sugawa-Katayama Y. Effect of endurance exercise on the tissue 8-hydroxydeoxyguanosine content in dogs. Free Radical Research 1997; 26: 523–528
  • Ames B.N., Gold L.S., Willett W.C. The causes and prevention of cancer. Proceedings of the National Academy of Sciences, USA 1995; 92: 5258–5265
  • Poulsen H.L., Loft S. Role of oxidative DNA damage in cancer initiation and promotion. European Journal of Cancer Prevention 1998; 7: 9–16
  • Block G. Vitamin C and cancer prevention, the epidemiologic evidence. American Journal of Clinical Nutrition 1991; 53: 270S–282S
  • Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, antioxidants, and the degenerative diseases of ageing. Proceedings of the National Academy of Sciences, USA 1993; 90: 7915–7922
  • Priemé H., Loft S., Nyyssönen S., Salonen J.T., Poulsen H.E. No effect of supplementation with vitamin E, ascorbic acid, or coenzyme Q10 on oxidative DNA damage estimated by 8-oxo-7,8-dihydro-2′-deoxyguanosine excretion in smokers. American Journal of Clinical Nutrition 1997; 65: 503–507
  • Daube H., Scherer G., Riedel K., Ruppert T., Tricker A.R., Rosenbaum P., Adlkofer F. DNA adducts in human placenta in relation to tobacco smoke exposure and plasma antioxidant status. Journal of Cancer Research and Clinical Oncology 1997; 123: 141–151
  • Fenech M., Dreosti I., Aitken C. Vitamin E supplements and their effect on vitamin E status in blood and genetic damage rate in peripheral blood lymphocytes. Carcinogenesis 1997; 18: 359–364
  • Fraga C.G., Motchnik P.A., Shigenaga M.K., Helbock H.J., Jacob R.A., Ames B.N. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proceedings of the National Academy of Sciences, USA 1991; 88: 11003–11006
  • Duthie S.J., Ma A., Ross M.A., Collins A.R. Antioxidant supplementation decreases oxidative DNA damage in human lymphocytes. Cancer Research 1996; 56: 1291–1295
  • Zhang D., Okada S., Yu Y., Zheng P., Yamaguchi R., Kasai H. Vitamin E inhibits apoptosis, DNA modification and cancer incidence by iron mediated peroxidation in Wistar rat kidney. Cancer Research 1997; 57: 2410–2414
  • Podmore I.D., Griffiths H.R., Herbert K.E., Mistry N., Mistry P., Lunec J. Vitamin C exhibits prooxidant properties. Nature 1998; 395: 231–232, I.D. Podmore, H.R. Griffiths, K.E. Herbert, N. Mistry, P. Mistry and J. Lunec (1998) Does vitamin C have a pro-oxidant effect? Nature, 395, 231–232.
  • Hertog M.G.L., Vries A., Ocké A., Schouten A., Bas Bueno-de-Mesquita H., Vehagen H. Oxidative DNA damage in humans, comparison between high and low habitual fruit and vegetable consumption. Biomarkers 1997; 2: 259–262
  • Rehman A., Collis C.S., Yang M., Kelly M., Diplock A.T., Halliwell B., Rice-Evans C. The effects of iron and vitamin C co-supplementation on oxidative damage to DNA in healthy volunteers. Biochemical Biophysical Research Communications 1998; 246: 293–298
  • Verhagen H., Poulsen H.E., Loft S., van Poppel G., Willems M.I, van Bladeren P.J. Reduction in oxidative DNA-damage in humans by Brussels sprouts. Carcinogenesis 1995; 16: 969–970
  • Deng X.-S., Tuo J., Poulsen H.E., Loft S. Prevention of oxidative DNA damage in rats by Brussels sprouts. Free Radical Research 1998; 28: 323–333
  • Stolk J.N., de Koning D.G.M., Pennings A.H., De Abreu R.A., nav der Putte L.B.A., Boerbooms A.M.T. Reduced purine 5′-nucleotidase activity in lymphocytes of patients with systemic lupus erythematosus, results of a pilot study. Annals of Rheumatic Diseases 1999; 58: 122–125

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.