15
Views
5
CrossRef citations to date
0
Altmetric
Original Article

The role of protein kinase C in the increased generation in isolated rat hepatocytes of the hydroxyl radical by puromycin aminonucleoside

, , , , &
Pages 487-496 | Received 10 Aug 1999, Published online: 07 Jul 2009

References

  • Frenk S., Antonowicz I., Chaig J.M., Metecoff J. Experimental nephrotic syndrome induced in rats by aminonucleoside renal lesion and body electrolyte composition. Proceedings of Society for Experimental Biology and Medicine 1955; 89: 424–427
  • Glasser R.J., Velosa J.A., Michael A.F. Experimental model of focal sclerosis. 1. Relationship to protein excretion in aminonucleoside nephrosis. Laboratory Investigation 1977; 36: 527–534
  • Diamond J.R., Bonventre J.V., Karnovsky M.J. A role for oxygen free radicals in aminonucleoside nephrosis. Kidney International 1986; 29: 478–483
  • Srivastava R.N., Diviven S., Kalia A., Travis L.B., Ansari N.H. Increased glomerular and urinary malondialdehyde in puromycin aminonucleoside-induced proteinuria in rats. Pediatric Nephrology 1995; 9: 48–51
  • Aoyagi K., Nagase S., Narita M., Tojo S. Role of active oxygen on methylguanidine synthesis in isolated rat hepatocytes. Kidney International 1987; 22: s229–s233
  • Aoyagi K., Nagase S., Sakamoto M., Narita M., Tojo S. Puromycin aminonucleoside stimulates the synthesis of methylguanidine: a possible marker of active oxygen generation in isolated rat hepatocytes. Guanidines, M. Mori, B.D. Cohen, A. Koide. Plenum, New York 1989; 2: 71–77, In
  • Aoyagi K., Akiyama K., Kuzure Y., Takemura K., Nagase S., lenaga K., Nakamura K., Koyama A., Narita M. Synthesis of creatol, a hydroxyl radical adduct of creatinine and its increase by puromycin aminonucleoside in isolated rat hepatocytes. Free Radical Research 1998; 29: 221–226
  • Nakamura K., Ohira C., Yamamoto H., Pfleiderer W., Ienaga K. Creatones A and B. Revision of the structure of the product in oxidation of creatinine and creatine. Bulletin of Chemistry Society of Japan 1990; 63: 1540–1542
  • Nakamura K., Ienaga K., Yokozawa T., Fujitsuka N., Oura H. Production of methylguanidine from creatinine via creatol by active oxygen species: analyses of the catabolism in vitro. Nephron 1991; 58: 42–44
  • Ienaga K., Nakamura K., Yamakawa H., Yokozawa T., Oura H., Nakano K. The use of 13C-labeling to prove that creatinine is oxidized by mammals into creatol and 5-hydroxy-1-methylhydantonin. Journal of Chemical Society Chemical Communication 1991; 509–510
  • Sakamoto M., Aoyagi K., Nagase S., Ishikawa T., Takemura K., Narita M. Methylguanidine synthesis by reactive oxygen species from human leukocytes. Japanese Journal of Nephrology 1989; 31: 851–858, (in Japanese)
  • Takemura K., Aoyagi K., Nagase S., Sakamoto M., Ishikawa T., Narita M. Effect of hyperbaric therapy on urinary methylguanidine excretion in normal human and patients with renal failure. Guanidino Compounds in Biology and Medicine, P.P. De Deyn, B. Marescau, V. Stalon, I.A. Quereshi. John Libbey & Company Ltd., London 1992; 301–330, In
  • Gerard C., McPhail L.C., Marfat A., Stimler-Gerard N.P., Bass D.A., McCall C.E. Role of protein kinase in stimulation of human polymorphonuclear leukocyte oxidative metabolism by various agonist. Journal of Clinical Investigation 1986; 77: 61–65
  • Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258: 607–614
  • Berry M.N., Friend D.S. High-yield preparation of isolated liver cells. Journal of Cell Biology 1969; 43: 506–520
  • Zahlten R.N., Stratman F.W., Lardy H.A. Regulation of glucose synthesis in hormone-sensitive isolated rat hepatocytes. Proceedings of the National Academy of Science of the United States of America 1973; 70: 3213–3218
  • Aoyagi K., Ohba S., Narita M., Tojo S. Regulation of biosynthesis of guanidinosuccinic acid in isolated rat hepatocytes and in vivo. Kidney International 1983; 24: S224–S228
  • Yamamoto Y., Manji T., Saito A., Maeda K., Ohta K. Ion exchange chromatographic separation and fluorometric determination of guanidino compounds in physiologic fluids. Journal of Chromatography 1979; 162: 327–340
  • Nakamura K., Ienaga K., Nakano K., Nakai M., Nakamura Y., Hasegawa G., Sawada M., Kondo M., Mori H., Kanatsuna T. Creatol, a creatinine metabolite, as a useful determinant of renal function. Nephron 1994; 66: 140–146
  • Smith P.K., Krohn R.I., Hermanson G.T., Malia A.K., Gartner F.H., Provenzano M.D., Goeke E.K., Olson B.J., Klenk D.C. Measurement of protein using bicinchoninic acid. Analytical Biochemistry 1985; 150: 76–85
  • Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoqunolinesulfonamides, novel and potent inhibitors of cyclic nucleoside dependent protein kinase and protein kinase C. Biochemistry 1984; 9: 5036–5041
  • Ando T., Hidaka H. Vasodilation action of HA1004 [N-(2-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride], a novel calcium antagonist with no effect on cardiac function. Journal of Pharmacology and Experimental Therapeutics 1984; 231: 141–141
  • Wilkinson S.E., Parker P.J., Nixon P.S. Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochemical Journal 1993; 294: 335–337
  • Dekker L.V., Parker P.J. Protein kinase C — a question of specificity. Trends in Biochemical Sciences 1984; 19: 73–77
  • Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB Journal 1995; 9: 484–496
  • Ricardo S.D., Bertram J.F., Ryan G.B. Reactive oxygen species in puromycin aminonucleoside nephrosis: in vitro studies. Kidney International 1994; 45: 1057–1069
  • Aoyagi K., Akiyama K., Tomida C., Gotoh M., Hirayama A., Takemura K., Ueda A., Nagase S., Koyama A., Narita M. Imaging of hydroperoxides in a rat glomerulus stimulated by puromycin aminonucleoside. Kidney International 1999; 55(Suppl 71)S153–S155
  • Aoyagi K., Nagase S., Koyama A., Narita M., Tojo S. Products of creatinine with hydroxyl radical as a useful marker of oxidative stress in vivo. Methods in Molecular Biology 1998; 108: 157–164
  • D'Hooge R., De Deyn P.P., Van de Vijver G., Antoons G., Raes A., VanBogaert P.P. Uraemic guanidino compounds inhibit gamma-aminobutyric acid-evoked whole cell currents in mouse spinal cord neurones. Neuroscience Letters 1999; 265: 83–86
  • Sorrentino R., Pinto A. The increase in blood pressure induced by inhibition of nitric oxide syntheses in anesthetized Wistar rats is inversely related to basal blood pressure value. Journal of Cardiovascular Pharmacology 1997; 29: 599–604
  • Haddy F.J. Potassium, Na+-K+ pump inhibitor and low-renin hypertension. Clinical and Investigative Medicine 1987; 10: 547–554
  • Giovannetti S., Biagi M., Balestri P.L., Navalesi R., Giagnoni P., deMatteis A., Ferro-Milone P., Perffetti C. Uremic-like syndrome in dogs chronically intoxicated with methylguanidine and creatinine. Clinical Science 1969; 36: 445–452
  • Mori A. Biochemistry and neurotoxicology of guanidino compounds. History and recent advances. Journal of Biological Sciences 1987; 22: 85–94
  • Yokozawa T., Mo Z.L., Oura H. Comparison of toxic effects of methylguanidine, guanidinosuccinic acid and creatinine in rats with adenine-induced chronic renal failure. Nephron 1989; 51: 388–392
  • Motomiya Y., Oyama N., Iwamoto H., Uchimura T., Maruyama I. N′-(carboxymethyl)lysine in blood from maintenance hemodialysis patients may contribute to dialysis-related amyloidosis. Kidney International 1998; 54: 1357–1366
  • Coussens L., Parker P.J., Rhee L., Yang-feng T.L., Chen E., Waterfield M.D., Franke U., Ullrich A. Multiple, distinct forms of bovine and human protein kinase C suggests diversity in cellular signaling pathways. Science 1986; 233: 859–866
  • Korchak H.M., Rossi M.W., Kilpatrick L.E. Selective role for beta-protein kinase C in signaling for O-2 generation but not degranulation or adherence in differentiated HL60 cells. Journal of Biological Chemistry 1998; 273: 27292–27299
  • Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry 1984; 23: 5036–5041
  • Kawamoto S., Hidaka H.Y. 1-(5-Isoquinoline-sulfonyl)-2-methylpiperazine(H-7) is a selective inhibitor of protein kinase C in rabbit platelets. Biochemical and Biophysical Research Communications 1984; 125: 258–264
  • Ido M., Asao T., Sakurai M., Inagaki M., Saito M., Hidaka H. An inhibitor of protein kinase C, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine(H-7) inhibits TPA-induced reduction of vincristine uptake from P388 murine leukemic cell. Leukemia Research 1986; 10: 1063–1069
  • Adachi T., Nakashima S., Saji S., Nakamura T., Nozawa Y. Mitogen-activated protein kinase activation in hepatocyte growth factor-stimulated rat hepatocytes: involvement of protein tyrosine kinase and protein kinase C. Hepatology 1996; 23: 1244–1253
  • Adachi T., Nakashima S., Saji S., Nakamura T., Nozawa Y. Phospholipase D activation in hepatocyte growth factor-stimulated rat hepatocytes mediates the expressions of c-jun and c-fos: involvement of protein tyrosine kinase, protein kinase C, and Ca2+. Hepatology 1996; 24: 1274–1281
  • Roma M.G., Orsler D.J., Coleman R. Canalicular retention as an in vitro assay of tight junctional permeability in isolated hepatocyte couplets: effects of protein kinase modulation and cholestatic agents. Fundamental and Applied Toxicology 1997; 37: 71–81
  • Bruck R., Nathanson M.H., Roelofsen H., Boyer J.L. Effects of protein kinase C and cytosolic Ca2+ on exocytosis in the isolated perfused rat liver. Hepatology 1994; 20: 1032–1040
  • Gustavsson L., Moehren G., Torres-Marquez M.E., Benistant C., Rubin R., Hoek J.B. The role of cytosolic Ca2+, protein kinase C, and protein kinase A in hormonal stimulation of phospholipase D in rat hepatocytes. Journal of Biological Chemistry 1994; 269: 849–859
  • Heitzer T., Wenzel U., Hink U., Krollner D., Skatchkov M., Stahl R.A., MacHarzina R., Brasen J.H., Meinertz T. Mnzel increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C. Kidney International 1999; 55: 252–260
  • Zafari A.M., Ushio-Fukai M., Akers M., Yin Q., Shah A., Harrison D.G., Taylor W.R., Griendling K.K. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 1998; 32: 488–495
  • Mizukami Y., Matsubara F., Matsukawa S., Izumi R. Cytochemical localization of glutaraldehyde-resistant NAD(P)H-oxidase in rat hepatocytes. Histochemistry 1983; 79: 259–267

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.