61
Views
34
CrossRef citations to date
0
Altmetric
Review Article

Mechanisms of biological S-nitrosation and its measurement

Pages 461-469 | Received 03 May 2000, Published online: 07 Jul 2009

References

  • Moncada S., Higgs A. The L-arginine-nitric oxide pathway. New England Journal of Medicine 1993; 329: 2002–2012
  • Furchgott R.F., Vanhoutte P.M. Endothelium-derived relaxing and contracting factors. FASEB Journal 1989; 3: 2007–2018
  • Ignarro L.J. Signal transduction mechanisms involving nitric oxide. Biochemical Pharmacology 1991; 41: 485–490
  • Stamler J.S., Singel D.J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258: 1898–1902
  • Stamler J.S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994; 78: 931–936
  • Chiueh C.C., Rauhala P. The redox pathway of S-nitrosoglutathione, glutathione and nitric oxide in cell to neuron communications. Free Radical Research 1999; 31: 641–650
  • Beckman J.S., Beckman T.W., Chen J., Marshall P.A., Freeman B.A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences of the United States of America 1990; 87: 1620–1624
  • Rubbo H., Darley-Usmar V., Freeman B.A. Nitric oxide regulation of tissue free radical injury. Chemical Research in Toxicology 1996; 9: 809–820
  • Beckman J.S., Koppenol W.H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. American Journal of Physiology 1996; 271: C1424–C1437
  • Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Archives of Biochemistry and Biophysics 1998; 356: 1–11
  • Estévez A.G., Crow J.P., Sampson J.B., Reiter C., Zhuang Y., Richardson G.J., Tarpey M.M., Barbeito L., Beckman J.S. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 1999; 286: 2498–2500
  • Wink D.A., Nims R.W., Darbyshire J.F., Christodoulou D., Hanbauer I., Cox G.W., Laval F., Laval J., Cook J.A., Krishna M.C., DeGraff W., Mitchell J.B. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chemical Research in Toxicology 1994; 7: 519–525
  • Kharitonov V.G., Sundquist A.R., Sharma V.S. Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. Journal of Biological Chemistry 1995; 270: 28158–28164
  • Goldstein S., Czapski G. Mechanism of the nitrosation of thiols and amines by oxygenated NO solutions: the nature of the nitrosating intermediates. Journal of the American Chemical Society 1996; 118: 3419–3425
  • Hogg N., Singh R.J., Kalyanaraman B. The role of glutathione in the transport and catabolism of nitric oxide. FEBS Letters 1996; 382: 223–228
  • Inoue K., Akaike T., Miyamoto Y., Okamoto T., Sawa T., Otagiri M., Suzuki S., Yoshimura T., Maeda H. Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. Journal of Biological Chemistry 1999; 274: 27069–27075
  • Stubauer G., Giuffre A., Sarti P. Mechanism of S-nitrosothiol formation and degradation mediated by copper ions. Journal of Biological Chemistry 1999; 274: 28128–28133
  • Lipton S.A., Choi Y.B., Pan Z.H., Lei S.Z., Chen H.S., Sucher N.J., Loscalzo J., Singel D.J., Stamler J.S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 1993; 364: 626–632
  • Rand M.J., Li C.G. Discrimination by the NO-trapping agent, carboxy-PTIO, between NO and the nitrergic transmitter but not between NO and EDRF. British Journal of Pharmacology 1995; 116: 1906–1910
  • Melino G., Bernassola F., Knight R.A., Corasaniti M.T., Nisticò G., Finazzi-Agrò A. S-Nitrosylation regulates apoptosis. Nature 1997; 388: 432–433
  • Ogura T., Tatemichi M., Esumi H. Nitric oxide inhibits CPP32-like activity under redox regulation. Biochemical and Biophysical Research Communications 1997; 236: 365–369
  • Mannick J.B., Hausladen A., Liu L., Hess D.T., Zeng M., Miao Q.X., Kane L.S., Gow A.J., Stamler J.S. Fas-induced caspase denitrosylation. Science 1999; 284: 651–654
  • Saville B. A scheme for the colorimetric determination of microgram amounts of thiols. Analyst 1958; 83: 670–672
  • Akaike T., Inoue K., Okamoto T., Nishino H., Otagiri M., Fujii S., Maeda H. Nanomolar quantification and identification of various nitrosothiols by high performance liquid chromatography coupled with flow reactors of metals and Griess reagent. Journal of Biochemistry 1997; 122: 459–466
  • Gaston B., Sears S., Woods J., Hunt J., Ponaman M., McMahon T., Stamler J.S. Bronchodilator S-nitrosothiol deficiency in asthmatic respiratory failure. Lancet 1998; 351: 1317–1319
  • Gaston B., Reilly J., Drazen J.M., Fackler J., Ramdev P., Arnelle D., Mullins M.E., Sugarbaker D.J., Chee C., Singel D.J., Loscalzo J., Stamler J.S. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proceedings of the National Academy of Sciences of the United States of America 1993; 90: 10957–10961
  • Marley R., Feelisch M., Holt S., Moore K. A chemiluminescence-based assay for S-nitrosoalbumin and other plasma S-nitrosothiols. Free Radical Research 2000; 32: 1–9
  • Stamler J.S., Jaraki O., Osborne J., Simon D.I., Keaney J., Vita J., Singel D., Valeri C.R., Loscalzo J. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proceedings of the National Academy of Sciences of the United States of America 1992; 89: 7674–7677
  • Minamiyama Y., Takemura S., Inoue M. Effect of thiol status on nitric oxide metabolism in the circulation. Archives of Biochemistry and Biophysics 1997; 341: 186–192
  • van der Vliet A., 't Hoen P.A., Wong P.S., Bast A., Cross C.E. Formation of S-nitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitrite with elimination of hydrogen peroxide. Journal of Biological Chemistry 1998; 273: 30255–30262
  • Moro M.A., Darley-Usmar V.M., Goodwin D.A., Read N.G., Zamora-Pino R., Feelisch M., Radomski M.W., Moncada S. Paradoxical fate and biological action of peroxynitrite on human platelets. Proceedings of the National Academy of Sciences of the United States of America 1994; 91: 6702–6706
  • Moro M.A., Darley-Usmar V.M., Lizasoain I., Su Y., Knowles R.G., Radomski M.W., Moncada S. The formation of nitric oxide donors from peroxynitrite. British Journal of Pharmacology 1995; 116: 1999–2004
  • Mayer B., Schrammel A., Klatt P., Koesling D., Schmidt K. Peroxynitrite-induced accumulation of cyclic GMP in endothelial cells and stimulation of purified soluble guanylyl cyclase. Dependence on glutathione and possible role of S-nitrosation. Journal of Biological Chemistry 1995; 270: 17355–17360
  • Davidson C.A., Kaminski P.M., Wolin M.S. NO elicits prolonged relaxation of bovine pulmonary arteries via endogenous peroxynitrite generation. American Journal of Physiology 1997; 273: L437–L444
  • Balazy M., Kaminski P.M., Mao K., Tan J., Wolin M.S. S-Nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide. Journal of Biological Chemistry 1998; 273: 32009–32015
  • Williams D.L. Nitrosating agents: is peroxynitrite a likely candidate?. Nitric Oxide 1997; 1: 522–527
  • Zhang H., Squadrito G.L., Uppu R.M., Lemercier J.N., Cueto R., Pryor W.A. Inhibition of peroxynitrite-mediated oxidation of glutathione by carbon dioxide. Archives of Biochemistry and Biophysics 1997; 339: 183–189
  • Pryor W.A., Squadrito G.L. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. American Journal of Physiology 1995; 268: L699–L722
  • Radi R., Beckman J.S., Bush K.M., Freeman B.A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. Journal of Biological Chemistry 1991; 266: 4244–4250
  • Vanin A.F., Malenkova I.V., Serezhenkov V.A. Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and electron paramagnetic resonance studies. Nitric Oxide 1997; 1: 191–203
  • Gow A.J., Stamler J.S. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 1998; 391: 169–173
  • Mukhopadhyay C.K., Attieh Z.K., Fox P.L. Role of ceruloplasmin in cellular iron uptake. Science 1998; 279: 714–717
  • Zaitsev V.N., Zaitseva I., Papiz M., Lindley P.F. An X-ray crystallographic study of the binding sites of the azide inhibitor and organic substrates to ceruloplasmin, a multi-copper oxidase in the plasma. Journal of Biological Inorganic Chemistry 1999; 4: 579–587
  • Calabrese L., Carbonaro M., Musci G. Presence of coupled trinuclear copper cluster in mammalian ceruloplasmin is essential for efficient electron transfer to oxygen. Journal of Biological Chemistry 1989; 264: 6183–6187
  • Mukhopadhyay C.K., Mazumder B., Lindley P.F., Fox P.L. Identification of the prooxidant site of human ceruloplasmin: a model for oxidative damage by copper bound to protein surfaces. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 11546–11551
  • Ortel T.L., Takahashi N., Putnam F.W. Structural model of human ceruloplasmin based on internal triplication, hydrophilic/hydrophobic character, and secondary structure of domains. Proceedings of the National Academy of Sciences of the United States of America 1984; 81: 4761–4765
  • Bonaccorsi di Patti M.C., Musci G., Giartosio A., D'Alessio S., Calabrese L. The multidomain structure of ceruloplasmin from calorimetric and limited proteolysis studies. Journal of Biological Chemistry 1990; 265: 21016–21022
  • Gorren A.C., de Boer E., Wever R. The reaction of nitric oxide with copper proteins and the photo-dissociation of copper-NO complexes. Biochimica et Biophysica Acta 1987; 916: 38–47
  • Cole A.P., Root D.E., Mukherjee P., Solomon E.I., Stack T.D.P. A trinuclear intermediate in the copper-mediated reduction of O2: four electrons from three coppers. Science 1996; 273: 1848–1850
  • Swain J.A., Darley-Usmar V., Gutteridge J.M. Peroxynitrite releases copper from ceruloplasmin: implications for atherosclerosis. FEBS Letters 1994; 342: 49–52
  • Williams D.L.H. S-Nitrosothiols and role of metal ions in decomposition to nitric oxide. Methods in Enzymology 1996; 268: 299–308
  • Singh R.J., Hogg N., Joseph J., Kalyananaraman B. Mechanism of nitric oxide release from S-nitrosothiols. Journal of Biological Chemistry 1996; 271: 18596–18603
  • Hogg N., Singh R.J., Konorev E., Joseph J., Kalyanaraman B. S-Nitrosoglutathione as a substrate for γ-glutamyl transpeptidase. Biochemical Journal 1997; 323: 477–481
  • Gitlin J.D. Transcriptional regulation of ceruloplasmin gene expression during inflammation. Journal of Biological Chemistry 1988; 263: 6281–6287
  • Fleming R.E., Whitman I.P., Gitlin J.D. Induction of ceruloplasmin gene expression in rat lung during inflammation and hyperoxia. American Journal of Physiology 1991; 260: L68–L74
  • Mazumder B., Mukhopadhyay C.K., Prok A., Cathcart M.K., Fox P.L. Induction of ceruloplasmin synthesis by IFN-γ in human monocytic cells. Journal of Immunology 1997; 159: 1938–1944
  • Ehrenwald E., Fox P.L. Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells. Journal of Clinical Investigation 1996; 97: 884–890
  • Klomp L.W., Farhangrazi Z.S., Dugan L.L., Gitlin J.D. Ceruloplasmin gene expression in the murine central nervous system. Journal of Clinical Investigation 1996; 98: 207–215
  • Yang F., Naylor S.L., Lum J.B., Cutshaw S., McCombs J.L., Naberhaus K.H., McGill J.R., Adrian G.S., Moore C.M., Barnett D.R., Bowman B.H. Characterization, mapping, and expression of the human ceruloplasmin gene. Proceedings of the National Academy of Sciences of the United States of America 1986; 83: 3257–3261
  • Patel B.N., David S. A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. Journal of Biological Chemistry 1997; 272: 20185–20190
  • Miyajima H., Nishimura Y., Mizoguchi K., Sakamoto M., Shimizu T., Honda N. Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology 1987; 37: 761–767
  • Harris Z.L., Takahashi Y., Miyajima H., Serizawa M., MacGillivray R.T., Gitlin J.D. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 2539–2543
  • Klomp L.W., Gitlin J.D. Expression of the ceruloplasmin gene in the human retina and brain: implications for a pathogenic model in aceruloplasminemia. Human Molecular Genetics 1996; 5: 1989–1996
  • Bannister J.V., Bannister W.H., Hill H.A., Mahood J.F., Willson R.L., Wolfenden B.S. Does caeruloplasmin dismute superoxide?. FEBS Letters 1980; 118: 127–129
  • Gutteridge J.M. Antioxidant properties of ceruloplasmin towards iron- and copper-dependent oxygen radical formation. FEBS Letters 1983; 157: 37–40
  • Marklund S.L. Ceruloplasmin, extracellular-superoxide dismutase, and scavenging of superoxide anion radicals. Journal of Free Radical Biology and Medicine 1986; 2: 255–260
  • Krsek-Staples J.A., Kew R.R., Webster R.O. Ceruloplasmin and transferrin levels are altered in serum and bronchoalveolar lavage fluid of patients with the adult respiratory distress syndrome. American Review of Respiratory Diseases 1992; 145: 1009–1015
  • Rauhala P., Mohanakumar K.P., Sziraki I., Lin A.M., Chiueh C.C. S-Nitrosothiols and nitric oxide, but not sodium nitroprusside, protect nigrostriatal dopamine neurons against iron-induced oxidative stress in vivo. Synapse 1996; 23: 58–60
  • Rauhala P., Lin A.M., Chiueh C.C. Neuroprotection by S-nitrosoglutathione of brain dopamine neurons from oxidative stress. FASEB Journal 1998; 12: 165–173
  • Halliwell B., Gutteridge J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical Journal 1984; 219: 114–114
  • Zai A., Rudd A.R., Scribner A.W., Loscalzo J. Cell-surface protein disulfide isomerase catalyzes transnitrosation and regulates intracellular transfer of nitric oxide. Journal of Clinical Investigation 1999; 103: 393–399
  • Miyamoto Y., Akaike T., Alam M.S., Inoue K., Hamamoto T., Ikebe N., Yoshitake J., Okamoto T., Maeda H. Novel functions of human α1-protease inhibitor after S-nitrosylation: inhibition of cysteine protease and antibacterial activity. Biochemical and Biophysical Research Communications 2000; 267: 918–923
  • Miyamoto Y., Akaike T., Maeda H. S-Nitrosylated human α1-protease inhibitor. Biochimica et Biophysica Acta 2000; 1477: 90–97
  • Travis J., Salvesen G.S. Human plasma proteinase inhibitors. Annual Review of Biochemistry 1983; 52: 655–709
  • Bostian K.A., Blackburn B.S., Wannemacher R.W., Jr., McGann V.G., Beisl W.R. Sequential changes in the concentration of specific serum proteins during typhoid fever infection in man. Journal of Laboratory and Clinical Medicine 1976; 87: 577–585
  • Johnson D., Travis J. The oxidative inactivation of human α-1-proteinase inhibitor. Further evidence for methionine at the reactive center. Journal of Biological Chemistry 1979; 254: 4022–4026
  • Carrell R.W., Jeppsson J.O., Laurell C.B., Brennan S.O., Owen M.C., Vaughan L., Boswell D.R. Structure and variation of human α1-antitrypsin. Nature 1982; 298: 329–334
  • Tyagi S.C. Reversible inhibition of neutrophil elastase by thiol-modified α-1 protease inhibitor. Journal of Biological Chemistry 1991; 266: 5279–5285
  • Eu J.P., Liu L., Zeng M., Stamler J.S. An apoptotic model for nitrosative stress. Biochemistry 2000; 39: 1040–1047
  • Tzeng E., Billiar T.R., Williams D.L., Li J., Lizonova A., Kovesdi I., Kim Y.M. Adenovirus-mediated inducible nitric oxide synthase gene transfer inhibits hepatocyte apoptosis. Surgery 1998; 124: 278–283
  • Ikebe N., Akaike T., Miyamoto Y., Ogawa M., Maeda H. Protective effect of S-nitroso-α1-protease inhibitor on hepatic ischemia-reperfusion injury. The Biology of Nitric Oxide Part 7, S. MOncada, L. Gustafsson, E.A. Higgs. Portland Press, London 2000, In in press
  • Mnaimneh S., Geffard M., Veyret B., Vincendeau P. Albumin nitrosylated by activated macrophages possesses antiparasitic effects neutralized by anti-NO-acetylated-cysteine antibodies. Journal of Immunology 1997; 158: 308–314
  • De Groote M.A., Granger D., Xu Y., Campbell G., Prince R., Fang F.C. Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 6399–6403
  • Konorev E.A., Tarpey M.M., Joseph J., Baker J.E., Kalyanaraman B. S-Nitrosoglutathione improves functional recovery in the isolated rat heart after cardioplegic ischemic arrest-evidence for a cardio-protective effect of nitric oxide. Journal of Pharmacology and Experimental Therapeutics 1995; 274: 200–206

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.