53
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Contribution of haemoglobin and membrane constituents modification to human erythrocyte damage promoted by peroxyl radicals of different charge and hydrophobicity

, , , &
Pages 17-31 | Received 25 Nov 1999, Published online: 07 Jul 2009

References

  • Beppu M., Mizukami A., Nagoya M., Kikugawa K. Binding of anti-band3 autoantibody to oxidatively damaged erythrocytes. Formation of senescent antigen on erythrocyte surface by an oxidative mechanism. Journal of Biological Chemistry 1990; 265: 3226–3233
  • Yuan J., Kannan R., Shinar E., Rachmilewitz E., Low P. Isolation, characterization and inmunoprecipitation studies of inmune complexes from membrane of β-thalassemic erythrocytes. Blood 1992; 79: 3007–3013
  • Turrini F., Ginsburg H., Bussolino F., Pescarmona G., Serra N., Arese P. Phagocytosis of Plasmodium falciparum-infected human red cells by human monocytes: Involvement of immune and non immune determinants on the parasite developmental stage. Blood 1992; 80: 801–808
  • Kannan R., Yuangand J., Low P. Isolation and characterization of the hemichrome stabilized membrane protein aggregates from sickle erythrocytes. Major site of autologous antibody binding. Journal of Biological Chemistry 1988; 263: 13766–13773
  • Arese P., De Flora A. Phatophysiology of hemolysis in glucose-6-phosphate dehydrogenase deficiency. Seminars in Hematology 1990; 27: 1–40
  • Platt O., Falcone J. Membrane protein lesions in erythrocytes with Heinz bodies. Journal of Clinical Investigation 1988; 82: 1051–1058
  • Grinberg L., Samuni A. Nitroxide stable radicals prevent primaquine-induced lysis of red blood cells. Biochimica et Biophysica Acta 1994; 1201: 284–288
  • Chue L., Holt S. Characterisation of a 45 kDa hemolysin from Trepomena denticola ATCC35404. Microbiology Pathology 1994; 16: 197–212
  • Pekiner B., Pennock J. Oxidation of human red blood cells by a free radical initiator and effects of radical scavengers. Biochemistry and Molecular Biology International 1994; 33: 1159–1116
  • Sato Y., Kamo S., Takahashi T., Suzuki Y. Mechanism of free radical-induced hemolysis of human erythrocytes: hemolysis by water-soluble radical initiator. Biochemistry 1995; 3: 8940–8949
  • Sandhu I., Ware K., Grisham M. Peroxyl radical-mediated hemolyisis: role of lipid, protein and sulfhydryl oxidation. Free Radical Research Communications 1992; 1: 111–122
  • Dean R., Hunt J., Grant A., Yamamoto Y., Niki E. Free radical damage to proteins: the influence of the relative localization of radical generation, antioxidants and target proteins. Free Radical Biology & Medicine 1991; 11: 161–168
  • Niki E., Komuro E., Takahashi M., Urano S., Ito E., Terao K. Oxidative hemolysis of erythrocytes and its inhibition by free radical scavengers. Journal of Biological Chemistry 1988; 263: 19809–19814
  • Takenaka M., Miki M., Mino M. The effect of alfatocopherol as an antioxidant on the oxidation of membrane thiols induced by free radicals generated in different sites. Archives of Biochemistry and Biophysics 1991; 285: 344–350
  • Minetti M., Mallozzi C., Corza G., Scott M., Kuypers F., Lubin B. Role of oxygen and carbon radicals in haemoglobin oxidation. Archives of Biochemistry and Biophysics 1993; 302: 233–244
  • Yasuda H., Noguchi N., Miki M., Morinobu W., Hirano K., Ogihara T., Tanbe T., Mino M., Terao K., Niki E. Hepatic damage induced by perfusion of radical generating azocompound and its inhibition by vitamin E. Chemical-Biological Interactions 1995; 97: 11–23
  • Lissi E., Salim-Hanna M., Faure M., Videla L. 2,2′- azo-bis-amidinopropane as a radical source for lipid peroxidation and enzyme inactivation studies. Xenobiotica 1991; 21: 995–1001
  • Escobar J., Rubio M., Lissi E. SOD and catalase inactivation by singlet oxygen and peroxyl radicals. Free Radical Biology & Medicine 1996; 20: 285–290
  • Videla L., Cáceres T., Lissi E. Antioxidant capacity of desferrioxamine in the chemically-initiated lipid peroxidation of rat erythrocyte ghost membranes. Biochemistry International 1988; 16: 799–807
  • Pekiner B., Pennock J. In vitro effect of an azo compound on the haemolysis and unsaturated fatty acids of red blood cells. Clinica Chemica Acta 1997; 263: 157–164
  • Winterle J., Mill T. Free-Radical dynamics in organized lipid bilayers. Journal of the American Chemical Society 1980; 102: 6336–6338
  • Barclay L., Locke S., MacNeil J., Van Kessel J., Burton J., Ingold K. Autoxidation of micelles and model membranes. Quantitative kinetic measurements can be made by using either water-soluble or lipid-soluble initiators with water-soluble or lipid-soluble chain-breaking antioxidants. Journal of the American Chemical Society 1984; 106: 2479–2481
  • Waugh S., Walder J., Low P. Partial characterization of the copolimerization reaction of erythrocyte membrane band3 with hemichromes. Biochemistry 1987; 26: 1777–1782
  • Celedón G., Lips V., Alvarado C., Cortés M., Lissi E., González G. Protein degradation in red cells exposed to 2,2′-azo-bis(2-amidinopropane) derived radicals. Biochemistry and Molecular Biology International 1997; 43: 1121–1127
  • Wu J., Sugiyama H., Zeng L.-H., Mickle D., Wu T.-W. Evidence of Trolox and some gallates as synergistic protectors of erythrocytes against peroxyl radicals. Biochemical Cell Biology 1998; 76: 661–664
  • Koga T., Moro K., Terao J. Protective effect of a Vitamin E analog, phophatidylchromanol, against oxidative hemolysis of human erythrocytes. Lipids 1998; 33: 589–595
  • Ivanov I. Low pH-induced hemolysis of erythrocytes is related to the entry of the acid into cytosol and oxidative stress on cellular membranes. Biochimica et Biophysica Acta 1999; 1415: 349–360
  • Hanlon M., Seybert D. The pH dependence of lipid peroxidation using water-soluble azo initiators. Free Radical Biology & Medicine 1997; 23: 712–719
  • Lissi E., Pascual C., Del Castillo M. Luminol luminescence induced by 2,2′-azo-bis (2-amidinopropane) thermolysis. Free Radical Research Communications 1992; 17: 299–311
  • Lissi E., Salim-Hanna M., Pascual C., del Castillo M. Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radical Biology & Medicine 1995; 18: 153–158
  • Winterbourn C. Oxidative Reactions of Haemoglobin. Methods in Enzymology 1990; 186: 265–271
  • Trotta R., Sullivan S., Stern A. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butylhydroperoxide. Biochemical Journal 1983; 212: 759–752
  • Yamamoto Y., Niki E., Eguchi J., Kamiya Y., Shimasaki H. Oxidation of biological membranes and its inhibition. Free radical chain oxidation of erythrocyte ghost membranes by oxygen. Biochemica et Biophysics Acta 1985; 819: 29–36
  • Niki E., Yamamoto Y., Komuro E., Sato K. Membrane damage due to lipid oxidation. American Journal of Clinical Nutrition 1991; 53: 201S–205S
  • Balagopalakrishna C., Manoharan P., Abugo O., Rifkind J. Production of superoxide from haemoglobin-bound oxygen under hypoxic conditions. Biochemistry 1996; 35: 6393–6398

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.