182
Views
69
CrossRef citations to date
0
Altmetric
Original Article

Quinolinic acid — Iron(II) complexes: Slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction

, , &
Pages 445-459 | Received 17 Jul 2000, Published online: 07 Jul 2009

References

  • Stone T.W. Neuropharmacology of quinolinic and kynurenic acids. Pharmacological Reviews 1993; 45: 309–379
  • Meldrum B., Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends in Pharmacological Sciences 1990; 11: 379–387
  • Whetsell W.O., Jr. Current concepts of excitotoxicity. Journal of Neuropathology and Experimental Neurology 1996; 55: 1–13
  • Heyes M.P., Saito K., Markey S.P. Human macrophages convert L-tryptophan into the neurotoxin quinolinic acid. Biochemical Journal 1992; 283: 633–635
  • Saito K., Chen C.Y., Masana M., Crowley J.S., Markey S.P., Heyes M.P. 4-Chloro-3-hydroxyanthranilate, 6-chlorotryptophan and norhamane attenuate quinolinic acid formation by interferon-gamma-stimulated monocytes (THP-1 cells). Biochemical Journal 1993; 291: 11–14
  • Moffett J.R., Espey M.G., Namboodiri M.A.A. Antibodies to quinolinic acid and the determination of its cellular distribution within the rat immune system. Cell & Tissue Research 1994; 278: 461–469
  • Moffett J.R., Espey M.G., Saito K., Namboodiri M.A.A. Quinolinic acid immunoreactive cells in the choroid plexus, leptomeninges and brain vasculature of the immune-stimulated gerbil. Journal of Neuroimmunology 1994; 54: 69–73
  • Heyes M.P., Achim C.L., Wiley C.A., Major E.O., Saito K., Markey S.P. Human microglia convert L-tryptophan into the neurotoxin quinolinic acid. Biochemical Journal 1996; 320: 595–597
  • Espey M.G., Chernyshev O.N., Reinhard J.F., Namboodiri M.A.A., Colton C.A. Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 1997; 8: 431–434
  • Heyes, M.P., Saito, K., Crowley, J.S., Davis, L.E., Demitrack, M.A., Der, M., Dilling, L.A., Elia, J., Kruesi, M.J., Lackner, A., et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 1992; 115: 1249–1273
  • Heyes, M.P., Brew, B.J., Martin, A., Price, R.W., Salazar, A.M., Sidtis, J.J., Yergey, J.A., Mouradian, M.M., Sadler, A.E., Keilp, J., et al. Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Annals of Neurology 1991; 29: 202–209
  • Kerr S.J., Armati P.J., Pemberton L.A., Smythe G., Tattam B., Brew B.J. Kynurenine pathway inhibition reduces neurotoxicity of HIV-1 infected macrophages. Neurology 1997; 49: 1671–1681
  • Behan W.M., McDonald M., Darlington L.G., Stone T.W. Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. British Journal of Pharmacology 1999; 128: 1754–1760
  • Rios C., Santamaria A. Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochemical Research 1991; 16: 1139–1143
  • Rios C., Santamaria A. MK-801, an N-methyl-D-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neuroscience Letters 1993; 159: 51–54
  • Štípek S., Štastný F., Pláteník J., Crkovská J., Zima T. The effect of quinolinate on rat brain lipid peroxidation is dependent on iron. Neurochemistry International 1997; 30: 233–237
  • Vejražka M., Pláteník J., Štípek S. Formation constants of iron(II)-quinolinic acid and iron(II)-picolinic acid complexes: spectrophotometric evaluation of 1:3 metal-ligand systems. Collection of Czechoslovak Chemical Communications 2000, submitted
  • Lannon A.M., Lappin A.G., Segal M.G. Redox reactions of some iron(II), iron(III), and cobalt(III) picolinate complexes. Journal of the Chemical Society. Dalton Transactions 1986; 3: 619–624, and references therein
  • Halliwell B., Gutteridge J.M.C. Role of free radicals and catalytic metal ions in human disease: An overview. Methods in Enzymology 1990; 186: 1–85
  • Halliwell B., Gutteridge J.M.C. Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Letters 1992; 307: 108–112
  • Winterbourn C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicology Letters 1995; 82/83: 969–974
  • Wardman P., Candeias L.P. Fenton chemistry: An introduction. Radiation Research 1996; 145: 523–531
  • Biaglow J.E., Kachur A.V. The generation of hydroxyl radicals in the reaction of molecular oxygen with polyphosphate complexes of ferrous ion. Radiation Research 1997; 148: 181–187
  • Graf E., Mahoney J.R., Bryant R.G., Eaton J.W. Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. Journal of Biological Chemistry 1984; 259: 3620–3624
  • Buettner G.R. Use of ascorbate as test for catalytic metals in simple buffers. Methods in Enzymology 1990; 186: 125–127
  • Stookey L. Ferrozine — a new spectrophotometric reagent for iron. Analytical Chemistry 1970; 42: 779–781
  • Aust S.D., Miller D.M., Samokyszyn V.M. Iron redox reactions and lipid peroxidation. Methods in Enzymology 1990; 186: 457–463
  • Lambeth D.O., Ericson G.R., Yorek M.A., Ray P.D. Implications for in vitro studies of the autoxidation of ferrous ion and the iron-catalyzed autoxidation of dithiothreitol. Biochimica Biophysica Acta 1982; 719: 501–508
  • Green M.J., Hill H.A.O. Chemistry of dioxygen. Methods in Enzymology 1984; 105: 3–22
  • Burkitt M.J. ESR spin trapping studies into the nature of the oxidizing species formed in the Fenton reaction: Pitfalls associated with the use of 5,5-dimethyl-1-pyrroline-N-oxide in the detection of the hydroxyl radical. Free Radical Research Communications 1993; 18: 43–57
  • Schoessler W., Kirsch D., Lassmann G. Die bestimmung der spinkonzentration mit der paramagnetischen elektronenresonanz. Zeitschrift fur Chemie (Leipzig) 1973; 13: 364–372
  • Goto K., Tamura H., Nagayama M. The mechanism of oxygenation of ferrous ion in neutral solution. Inorganic Chemistry 1970; 9: 963–964, and references therein
  • Tadolini B. Iron autoxidation in Mops and Hepes buffers. Free Radical Research Communications 1987; 4: 149–160
  • Jewett S.L., Eggling S., Geller L. Novel method to examine the formation of unstable 2:1 and 3:1 complexes of catecholamines and iron(III). Journal of Inorganic Biochemistry 1997; 66: 165–173, and references therein
  • Iwahashi H., Kawamori H., Fukushima K. Quinolinic acid, α-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid enhance the Fenton reaction in phosphate buffer. Chemico-Biological Interactions 1999; 118: 201–215
  • Bannister W.H., Bannister J.V., Searle A.J.F., Thornalley P.J. The reaction of superoxide radicals with metal picolinate complexes. Inorganic Chimica Acta 1983; 78: 139–142
  • Floyd R.A. Direct demonstration that ferrous ion complexes of di- and triphosphate nucleotides catalyse hydroxyl free radical formation from hydrogen peroxide. Archives of Biochemistry and Biophysics 1983; 225: 263–270
  • Steenken S., O'Neill P. Selectivity of addition of the hydroxyl radical to ring positions of pyridine and pyridine mono- and dicarboxylic acids. An electron spin resonance investigation. The Journal of Physical Chemistry 1978; 82: 372–374
  • Taniguchi H. ESR study of the dissociation of hydroxyl protons in hydroxyl radical adducts to pyridinedicarboxylic acids. The Journal of Physical Chemistry 1987; 91: 5213–5217
  • Solar S., Getoff N., Sehested K., Holcman J. Pulse radiolysis of pyridinecarboxylic acids in aqueous solution. Radiation Physics and Chemistry 1991; 38: 323–332
  • Goodell B., Jellison J., Liu J., Daniel G., Paszczynski A., Fekete F., Krishnamurthy S., Jun L., Xu G. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal degradation of wood. Journal of Biotechnology 1997; 53: 133–162
  • Gutteridge J.M.C., Quinlan G.J., Kovacic P. Phagomimetic action of antimicrobial agents. Free Radical Research 1998; 28: 1–14
  • Sillen L.G., Martell A.E. Stability constants of metal ions complexes. Special Publication No. 17, The Chemical Society, London 1964
  • Sillen L.G., Martell A.E. Stability constants of metal ions complexes. Supplement No. 1 to Special Publication No. 17, The Chemical Society, London 1971
  • Kuhn L.C., Schulman H.M., Ponka P. Iron-transferrin requirements and transferrin receptor expression in proliferating cells. Iron Transport and Storage, P. Ponka, H.M. Schulman, R.C. Woodworth. CRC Press, Boca Raton, Ann Arbor and Boston 1990; 150–191, In
  • Beninger R.J., Colton A.M., Ingles J.L., Jhamandas K., Boegman R.J. Picolinic acid blocks the neurotoxic but not the neuroexcitant properties of quinolinic acid in the brain: evidence from turning behaviour and tyrosine hydroxylase immunohistochemistry. Neuroscience 1994; 61: 603–612
  • Jhamandas K.H., Boegman R.J., Beninger R.J., Flesher S. Role of zinc in blockade of excitotoxic action of quinolinic acid by picolinic acid. Amino acids 1998; 14: 257–261
  • Nakao N., Brundin P. Effects of α-phenyl-tert-butyl nitrone on neuronal survival and motor function following intrastriatal injections of quinolinate or 3-nitropropionic acid. Neuroscience 1997; 76: 749–761

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.