43
Views
8
CrossRef citations to date
0
Altmetric
Original

Broad-spectrum antioxidant peptides derived from His residue-containing sequences present in human paraoxonase 1

, , &
Pages 349-358 | Received 26 Nov 2005, Published online: 07 Jul 2009

References

  • La Du BN. Structural and functional diversity of paraoxonase. Nat Med 1996; 2: 1186–1187
  • Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, Watson AD, Lusis AJ. Atherosclerosis: Basic mechanism, oxidation, inflammation and genetics. Circulation 1995; 9: 2488–2496
  • Mackness MI, Mackness B, Durrington PA, Connelly PW, Hegele RA. Paraoxonase: Biochemistry, genetics and relationship to plasma lipoproteins. Curr Opin Lipidol 1996; 7: 69–76
  • Davies HG, Richter RJ, Keifer M, Broomfield CA, Sowalla J, Furlong CE. The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 1996; 14: 334–336
  • Gan KN, Smolen A, Eckerson HW, La Du BN. Purification of human serum paraoxonase/arylesterase. Drug Metab Dispos 1991; 19: 100–106
  • Billecke SD, Draganov R, Counsell P, Stetson C, Watson C, La Du BN. Human serum paraoxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters. Drug Metab Dispos 2000; 28: 1335–1342
  • Teiber JF, Draganov DI, La Du BN. Lactonase and lactonizing activities of human serum paraoxonase (PON1) and rabbit serum PON3. Biochem Pharmacol 2003; 66: 887–896
  • Watson AD, Berliner JA, Hama SY, La Du BN, Fauli KF, Fogelman AM, Mohamad N. Protective effect of high density lipoprotein associated paraoxnase: Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Investig 1995; 96: 2882–2891
  • Aviram M, Rosenblat M, Billecke S, Erogul J, Sorenson R, Bisgaier CL, Newton RS, La Du BN. Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic Biol Med 1999; 26: 892–904
  • Shih DM, Gu L, Xia YR, Navab M, Li WF, Hama S, Castellani LW, Furlong CE, Costa LG, Fogelman AM, Lusis AJ. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 1998; 394: 284–287
  • Shih DM, Gu L, Hama S, Xia YR, Navab M, Fogelman AM, Lusis AJ. Genetic-dietary regulation of serum paraoxonase expression and its role in atherogenesis in a mouse model. J Clin Investig 1996; 97: 1630–1639
  • Aviram M, Hardak E, Vaya J, Mahmood S, Milo S, Hoffman A, Billicke S, Draganov D, Rosenblat M. Human serum paraoxnase (PON 1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circlulation 2000; 101: 2510–2517
  • Ruiz J, Blanche H, James RW, Garin MC, Vaisse C, Charpentier G, Cohen N, Morabia A, Passa P, Froguel P. Gln–Arg192 polymorphism of paraoxonase and coronary heart disease in type 2 diabetes. Lancet 1995; 30: 869–872
  • Mackness B, Davies GK, Turkie W, Lee E, Roberts DH, Hill E, Roberts C, Durrington PN, Mackness MI. Paraoxonase status in coronary heart disease: Are activity and concentration more important than genotype?. Arterioscler Thromb Vasc Biol 2001; 21: 1451–1457
  • Marathe GK, Zimmerman GA, McIntyre TM. PAF acetylhydrolase, and not paraoxonase-1, is the oxidized phospholipid hydrolase of high density lipoprotein particles. J Biol Chem 2003; 278: 3937–3947
  • Connelly PW, Draganov D, Maguire GF. Paraoxonase-1 does not reduce or modify oxidation of phospholipids by peroxynitrite. Free Radic Biol Med 2005; 38: 164–174
  • Teiber JF, Draganov DI, La Du BN. Purified human serum PON1 does not protect LDL against oxidation in the in vitro assays initiated with copper or AAPH. J Lipid Res 2004; 45: 2260–2268
  • Sorenson RC, Bisgaier CL, Aviram M, Hsu C, Billecke S, La Du BN. Human serum paraoxonase/arylesterase's retained hydrophobic N-terminal leader sequence associates with HDLs by binding phospholipids: Apolipoprotein A-I stabilizes activity. Arterioscler Thromb Vasc Biol 1999; 19: 2214–2225
  • Nguyen SD, Sok DE. Beneficial effect of oleoylated lipids on paraoxonase1: Protection against oxidative inactivation and stabilization. Biochem J 2003; 375: 275–285
  • Nguyen SD, Sok DE. Preferential inhibition of paraoxonase activity of human paraoxonase 1 by negatively charged lipids. J Lipid Res 2004; 45: 2211–2220
  • Kuo CL, La Du BN. Comparison of purified human and rabbit serum paraoxonases. Drug Metab Dispos 1995; 23: 935–944
  • Debord J, Bollinger JC, Merle L, Dantoine T. Inhibition of human serum arylesterase by metal chlorides. J Inorg Biochem 2003; 94: 1–4
  • Nguyen SD, Sok DE. Oxidative inactivation of paraoxnase1, an antioxidant protein and its effect on antioxidant action. Free Radic Res 2003; 37: 1319–1330
  • Bar-Or D, Thomas GW, Rael LT, Lau EP, Winkler JV. Asp–Ala–His–Lys (DAHK) inhibits copper-induced oxidative DNA double strand breaks and telomere shortening. Biochem Biophys Res Commun 2001; 28: 356–360
  • Halliwell B. Albumin—an important extracellular antioxidant?. Biochem Pharmacol 1988; 37: 569–571
  • Bar-Or D, Curtis G, Rao N, Bampos N, Lau E. Characterization of the Co2+ and Ni2+ binding amino-acid residues of the N-terminus of human albumin: An insight into the mechanism of a new assay for myocardial ischemia. Eur J Biochem 2001; 268: 42–47
  • Bar-Or D, Rael LT, Lau EP, Rao NK, Thomas GW, Winkler JV, Yukl RL, Kingston RG, Curtis CG. An analog of the human albumin N-terminus (Asp–Ala–His–Lys) prevents formation of copper-induced reactive oxygen species. Biochem Biophys Res Commun 2001; 284: 856–862
  • Kohen R, Yamamoto Y, Cundy KC, Ames BN. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci USA 1988; 85: 3175–3179
  • Hawkins CL, Pattison DI, Davies MJ. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 2003; 25: 259–274
  • Schumaker VN, Puppione DL. Sequential flotation ultracentrifugation. Methods Enzymol 1986; 128: 155–170
  • Bollag DM, Michael DR, Stuart JE. Protein methods2nd. Wiley-Liss, New York 1996
  • Turkington RW, Tracy FM. Spectrophotometric determination of ultramicro amounts of copper with 1,5-diphenylcarbohydrazide. Anal Chem 1958; 30: 1699–1701
  • Esterbauer H, Striegl G, Puhl H, Rotheneder M. Continuous monitoring of in vitro oxidation of human low-density lipoprotein. Radic Res Commun 1989; 6: 67–75
  • Morel DW, Hessler JR, Chisolm GM. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res 1983; 8: 1070–1076
  • Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol 1990; 186: 407–421
  • Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 1971; 44: 276–287
  • Ellman GL, Courtney KD, Andres VJ, Feather-stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88–95
  • Steel RGD, Torrie JH. Principles and procedures of statistics. McGraw-Hill, New York 1960; 99–132
  • Sattler W, Mohr D, Stocker R. Rapid isolation of lipoproteins and assessment of their peroxidation by high-performance liquid chromatography postcolumn chemiluminescence. Methods Enzymol 1994; 233: 469–489
  • Lass A, Witting P, Stocker R, Esterbauer H. Inhibition of copper- and peroxyl radical-induced LDL lipid oxidation by ebselen: Antioxidant actions in addition to hydroperoxide-reducing activity. Biochim Biophys Acta 1996; 1303: 111–118
  • Ma YS, Chao CC, Stadtman ER. Oxidative modification of glutamine synthetase by 2,2′-azo bis (2-amidinopropane) dihydrochloride: Loss of 2 of 16 histidine residues, 6 of 17 tyrosine residues, 5 of 16 methionine residues, and all of the tryptophan residues (2 residues). Arch Biochem Biophys 1999; 363: 129–134
  • Dean RT, Hunt JV, Grant AJ, Yamamoto Y, Niki E. Free radical damage to proteins: The influence of the relative localization of radical generation, antioxidants, and target proteins. Free Radic Biol Med 1991; 11: 161–168
  • Gebicki S, Gebicki JM. Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J 1993; 289: 743–749
  • Den Hartog GJ, Vegt E, Van der Vijgh WJ, Haenen GR, Bast A. Hypochlorous acid is a potent inhibitor of acetylcholinesterase. Toxicol Appl Pharmacol 2002; 181: 228–332
  • Rosenblat M, Vaya J, Shih D, Aviram M. Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: A possible role for lysophosphatidylcholine. Atherosclerosis 2005; 179: 69–77
  • Aviram M, Rosenblat M. Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic Biol Med 2004; 37: 1304–1316
  • Burkitt MJ. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: Roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Arch Biochem Biophys 2001; 394: 117–135
  • Wagner P, Heinecke JW. Copper ions promote peroxidation of low density lipoprotein lipid by binding to histidine residues of apolipoprotein B100, but they are reduced at other sites on LDL. Arterioscler Thromb Vasc Biol 1997; 17: 3338–3346
  • van Himbergen TM, van Tits LJ, Hectors MP, de Graaf J, Roest M, Stalenhoef AF. Paraoxonase-1 and linoleic acid oxidation in familial hypercholesterolemia. Biochem Biophys Res Commun 2005; 333: 787–793
  • Kwon HY, Choi SY, Won MH, Kang T, Kang JH. Lysine, histidine, proline, and valine residues were sensitive to AAPH. Biochim Biophys Acta 2000; 1543: 69–76
  • Podrez EA, Abu-Soud HM, Hazen SL. Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med 2000; 28: 1717–1725
  • Hazell LJ, Arnold L, Flowers D, Waeg G, Malle E, Stocker R. Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Investig 1996; 97: 1535–1544
  • Pattison DI, Hawkins CL, Davies MJ. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins: Absolute rate constants, product analysis, and computational modeling. Chem Res Toxicol 2003; 16: 439–449
  • Bergt C, Fu X, Huq NP, Kao J, Heinecke JW. Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid oxidizes high density lipoprotein. J Biol Chem 2004; 279: 7856–7866
  • Pattison DI, Davies MJ. Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation. Biochemistry 2005; 44: 7378–7387

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.