480
Views
83
CrossRef citations to date
0
Altmetric
Original

Oxygen free radicals in cell senescence: Are they signal transducers?

&
Pages 1277-1283 | Received 23 Jun 2006, Published online: 07 Jul 2009

References

  • Kirkwood TBL. Understanding the odd science of aging. Cell 2005; 120: 437–447
  • Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298–300
  • Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, Richardson A. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 2003; 16: 29–37
  • Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005; 308: 1909–1911
  • Harman D. The biologic clock: The mitochondria?. J Am Geriatr Soc 1972; 20: 145–147
  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004; 429: 417–423
  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA. Mitochondrial DNA mutations oxidative stress, and apoptosis in mammalian aging. Science 2005; 309: 481–484
  • Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R, Jacobs HT, Larsson N-G. From the cover: Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. PNAS 2005; 102: 17993–17998
  • Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu Z-X, Ferrans VJ, Howard BH, Finkel T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 1999; 274: 7936–7940
  • Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol 2003; 23: 8576–8585
  • Macip S, Igarashi M, Fang L, Chen A, Pan Z, Lee S, Aaronson S. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 2002; 21: 2180–2188
  • Colavitti R, Finkel T. Reactive oxygen species as mediators of cellular senescence. IUBMB Life 2005; 57: 277–281
  • Magalhaes JPd, Church GM. Cells discover fire: Employing reactive oxygen species in development and consequences for aging. Exp Gerontol 2006; 41: 1–10
  • Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25: 585–621
  • Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345: 458–460
  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349–352
  • Fagagna FdAd, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T, Saretzki G, Carter NP, Jackson SP. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426: 194–198
  • von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci 2002; 27: 339–344
  • Petersen S, Saretzki G, von Zglinicki T. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp Cell Res 1998; 239: 152–160
  • Sitte N, Saretzki G, von Zglinicki T. Accelerated telomere shortening in fibroblasts after extended periods of confluency. Free Radic Biol Med 1998; 24: 885–893
  • Baird DM, Rowson J, Wynford-Thomas D, Kipling D. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet 2003; 33: 203–207
  • von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 2000; 28: 64–74
  • Serra V, von Zglinicki T, Lorenz M, Saretzki G. Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem 2003; 278: 6824–6830
  • Forsyth NR, Evans AP, Shay JW, Wright WE. Developmental differences in the immortalization of lung fibroblasts by telomerase. Aging Cell 2003; 2: 235–243
  • Saretzki G, Murphy MP, von Zglinicki T. MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell 2003; 2: 141–143
  • Chen Q, Ames BN. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblasts F65 cells. PNAS 1994; 91: 4130–4134
  • von Zglinicki T, Saretzki G, Docke W, Lotze C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: A model for senescence?. Exp Cell Res 1995; 220: 186–193
  • Jacob C, Holme AL, Fry FH. The sulfinic acid switch in proteins. Org Biomol Chem 2004; 2: 1953–1956
  • Richter T, von Zglinicki T. Oxidative DNA damage and telomere shortening. Landes Biosci 2006, in press
  • Passos JF, von Zglinicki T, Saretzki G. Mitochondrial dysfunction and cell senescence: Cause or consequence?. Rejuvenation Res 2006; 9: 64–68
  • Saretzki G, Armstrong L, Leake A, Lako M, von Zglinicki T. Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells 2004; 22: 962–971
  • von Zglinicki T. Replicative senescence and the art of counting. Exp Gerontol 2003; 38: 1259–1264
  • Smith JR, Whitney RG. Intraclonal variation in proliferative potential of human diploid fibroblasts: Stochastic mechanism for cellular aging. Science 1980; 207: 82–84
  • Martin-Ruiz C, Saretzki G, Petrie J, Ladhoff J, Jeyapalan J, Wei W, Sedivy J, von Zglinicki T. Stochastic variation in telomere shortening rate causes heterogeneity of human fibroblast replicative life span. J Biol Chem 2004; 279: 17826–17833
  • Sozou PD, Kirkwood T. A stochastic model of cell replicative senescence based on telomere shortening, oxidative stress, and somatic mutations in nuclear and mitochondrial DNA. J Theor Biol 2001; 213: 573–586
  • Hutter E, Unterluggauer H, Uberall F, Schramek H, Jansen-Durr P. Replicative senescence of human fibroblasts: The role of RAS-dependent signaling and oxidative stress. Exp Gerontol 2002; 37: 1165–1174
  • Allen RG, Tresini M, Keogh BP, Doggett DL, Cristofalo VJ. Differences in electron transport potential, antioxidant defenses, and oxidant generation in young and senescent fetal lung fibroblasts (WI-38). J Cell Physiol 1999; 180: 114–122
  • Passos JF, von Zglinicki T. Mitochondria, telomeres and cell senescence. Exp Gerontol 2005; 40: 466–472
  • Stampfer MR, Yaswen P. Human epithelial cell immortalization as a step in carcinogenesis. Cancer Lett 2003; 194: 199–208
  • Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME, Hannon GJ, Lowe SW. Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol 2002; 22: 3497–3508
  • Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 1998; 12: 3008–3019
  • Benanti JA, Galloway DA. Normal human fibroblasts are resistant to RAS-induced senescence. Mol Cell Biol 2004; 24: 2842–2852
  • Ogryzko V, Hirai T, Russanova V, Barbie D, Howard B. Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Biol 1996; 16: 5210–5218
  • Balin AK, Goodman DB, Rasmussen H, Cristofalo VJ. The effect of oxygen and vitamin E on the lifespan of human diploid cells in vitro. J Cell Biol 1977; 74: 58–67
  • Dumont P, Burton M, Chen QM, Gonos ES, Frippiat C, Mazarati J-B, Eliaers F, Remacle J, Toussaint O. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med 2000; 28: 361–373
  • Herskind C, Rodemann HP. Spontaneous and radiation-induced differentiation of fibroblasts. Exp Gerontol 2000; 35: 747–755
  • Robles S, Adami G. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 1998; 16: 1113–1123
  • Jeyapalan J, Leake A, Ahmed S, Saretzki G, Tilby M, von Zglinicki T. The role of telomeres in etoposide induced tumor cell death. Cell Cycle 2004; 3: 1169–1176
  • Shiloh Y. ATM and related protein kinases: Safeguarding genome integrity. Nat Rev Cancer 2003; 3: 155–168
  • Pascal T, Debacq-Chainiaux F, Chretien A, Bastin C, Dabee A-F, Bertholet V, Remacle J, Toussaint O. Comparison of replicative senescence and stress-induced premature senescence combining differential display and low-density DNA arrays. FEBS Lett 2005; 579: 3651–3659
  • Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G. DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 2006; 17: 1583–1592
  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature 1997; 389: 300–305
  • Matoba S, Kang J-G, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM. p53 Regulates mitochondrial respiration. Science 2006; 312: 1650–1653
  • Kirchman PA, Kim S, Lai C-Y, Jazwinski SM. Interorganelle signaling is a determinant of longevity in saccharomyces cerevisiae. Genetics 1999; 152: 179–190
  • Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Frohlich K-U, Breitenbach M. Aged mother cells of saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 2001; 39: 1166–1173
  • Dillin A, Hsu A-L, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C. Rates of behavior and aging specified by mitochondrial function during development. Science 2002; 298: 2398–2401
  • Butow RA, Avadhani NG. Mitochondrial signaling: The retrograde response. Mol Cell 2004; 14: 1–15
  • Deng Q, Liao R, Wu B-L, Sun P. High intensity ras signaling induces premature senescence by activating p38 pathway in primary human fibroblasts. J Biol Chem 2004; 279: 1050–1059
  • Iwasa H, Han J, Ishikawa F. Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells 2003; 8: 131–144
  • Arnould T, Vankoningsloo S, Renard P, Houbion A, Ninane N, Demazy C, Remacle J, Raes M. CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J 2002; 21: 53–63
  • Biswas G, Adebanjo OA, Freedman BD, Anandatheerthavarada HK, Vijayasarathy C, Zaidi M, Kotlikoff M, Avadhani NG. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: A novel mode of inter-organelle crosstalk. EMBO J 1999; 18: 522–533
  • Biswas G, Anandatheerthavarada HK, Zaidi M, Avadhani NG. Mitochondria to nucleus stress signaling: A distinctive mechanism of NF{kappa}B/Rel activation through calcineurin-mediated inactivation of I{kappa}B{beta}. J Cell Biol 2003; 161: 507–519
  • Bernard D, Quatannens B, Vandenbunder B, Abbadie C. Rel/NF-kappa B transcription factors protect against tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by up-regulating the TRAIL decoy receptor DcR1. J Biol Chem 2001; 276: 27322–27328
  • Xu D, Finkel T. A role for mitochondria as potential regulators of cellular life span. Biochem Biophys Res Commun 2002; 294: 245–248
  • Lee HC, Yin PH, Chi CW, Wei YH. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J Biomed Sci 2002; 9: 517–526

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.